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ABSTRACT

Undoubtedly, eye movements contain an immense amount of in-
formation, especially when looking to fast eye movements, namely
time to the fixation, saccade, and micro-saccade events. While, mod-
ern cameras support recording of few thousand frames per second,
to date, the majority of studies use eye trackers with the frame rates
of about 120 Hz for head-mounted and 250 Hz for remote-based
trackers. In this study, we aim to overcome the challenge of the
pupil tracking algorithms to perform real time with high speed
cameras for remote eye tracking applications. We propose an itera-
tive pupil center detection algorithm formulated as an optimization
problem. We evaluated our algorithm on more than 13,000 eye im-
ages, in which it outperforms earlier solutions both with regard to
runtime and detection accuracy. Moreover, our system is capable of
boosting its runtime in an unsupervised manner, thus we remove
the need for manual annotation of pupil images.
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1 INTRODUCTION

Visual gaze behavior is in the focus of various scientific fields such as
medicine, driving, psychology, human cognition, human-computer
interaction, and many more. Approaches for the extraction of hu-
man gaze data include brain computer interface (BCI) based on
EEG [Tan et al. 2013], magnetic fields [Robinson 1963], and video-
based eye feature extraction. Video-based gaze tracking systems
are widely used due to their comfort and availability at low costs.
However, efforts need to be applied to signal and image processing
in order to deal with the challenges such as reflections in image-
based techniques. Nevertheless, video-based eye tracking becomes
more popular because it is less invasive than the other approaches.

Video-based eye tracking can be divided into two main groups;
remote and head-mounted. In remote eye tracking, the subject is
recorded using one or more external cameras. The gaze location
of a subject can be derived after varying processing steps: namely
face, eye, pupil center detection, and head orientation estimation.
For head-mounted eye trackers, the processing step consists mainly
of pupil localization in the eye images. Since head-mounted eye
trackers are worn by subjects, meaning the field camera moves
with the subject’s head, we have an implicit compensation for
head movements. Therefore, the only information which has to
be extracted is the pupil center in the eye cameras. While modern
devices constantly improve their design to be lightweight and as
non-intrusive as possible [Kassner et al. 2014], they are still worn
on the head. Therefore, they become uncomfortable after a certain
time and the cameras remain in the user’s peripheral field of view.

On the other hand, remote-based eye trackers are non-invasive
and modern cameras are able to record with high frame rates. Both
properties are important advantages over head-mounted eye track-
ers. The high frame rates are useful in medical and psychological
studies and eye movement research [Holmqvist et al. 2011]. When
driving, for example, it is also necessary that the system used does
not affect the driving performance and the driver is not disturbed.
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This is the case for driver monitoring [Braunagel et al. 2015; Liu
et al. 2002] or gaze-based assistance systems [Kasneci 2013].

With this paper, we develop a novel pupil center detection algo-
rithm which is based on oriented edge optimization. We believe,
this is an important contribution to the eye-tracking community,
because for high-speed cameras processing time is critical; for in-
stance, a camera with 500 Hz has only 2 milliseconds per frame.
Therefore, we propose an unsupervised boosting approach (no
annotations needed) that is capable of decreasing the run time dras-
tically. The algorithm is compared to other state-of-the-art pupil
detection approaches based on the public data sets BioID [Jesorsky
et al. 2001], [Fuhl et al. 2016a], GI4E [Villanueva et al. 2013], and
MUCT [Milborrow et al. 2010].

2 RELATED WORK

There has been extensive research in the machine vision and eye
tracking communities on pupil detection algorithms. Asadifard and
Shanbezadeh [Asadifard and Shanbezadeh 2010] used a cumulative
distribution function together with a threshold. First, The algorithm
extracts the iris region and then separates the pupil out of this area.
Before the pupil is extracted, the threshold region is enhanced using
morphologic erosion to remove artifacts produced by eyelashes.
The pupil extraction step is performed by thresholding the iris
region with its mean intensity value. Finally, the center of mass is
used as the pupil center.

Droege and Paulus [Droege and Paulus 2010] employed a band-
pass filter on gradients. This filter reduces the amount of possible
pupil edge candidates. The gradients are interpreted as lines by
using their position and the gradient direction information. The in-
tersection point of all these lines is computed using an M-Estimator.

Timm and Barth [Timm and Barth 2011] used the angle difference
between each gradient and all image positions for pupil center
estimation. Therefore, the angle between all gradient directions
and the vector from each image position to the gradient location is
computed. The result is weighted by the inverted image intensity
to increase the response of dark image locations. The final pupil
center candidate with the highest response is chosen.

Fuhl et al. [Fuhl et al. 2016a] used the second part of the ElSe [Fuhl
et al. 2016b] algorithm. It consists of a center surround difference
filter weighted with an inverted mean filter. The maximal response
is used as pupil center.

Taking a different approach by [Skodras and Fakotakis 2015], the
pupil detection algorithm used a luminance map of the eye region in
combination with the fast radial symmetry transform proposed in
[Loy and Zelinsky 2003]. The luminance map is computed using the
YCbCr color space together with gray-scale dilation and erosion. In
the fast radial symmetry transform, each image gradient votes for
possible circle center candidates. Each candidate vote is computed
based on the gradient magnitude and is spread to its surrounding
pixels by using a Gaussian distribution. The luminance map is then
added to the result from the radial symmetry transform and the
maximum is selected as pupil center.

More recently, George and Routray [George and Routray 2016]
applied size invariant circle detection [Atherton and Kerbyson
1999]. For coarse positioning, the orientation annulus is used with
a vertically stronger weighting. Outgoing from this position, the
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gradients in a pre-specified range are collected and outliers are
removed based on their angle and magnitude. The second outlier
removal step is based on median filtering of the remaining gradient
candidates. The final pupil center is found using RANSAC ellipse
fitting.

Additionally, there are several approaches developed for head-
mounted eye trackers. These approaches were developed for close-
up eye images, different from those captured with remote setups
and, thus, are not evaluated in this work. For a comprehensive
review of such methods, we refer the reader to [Fuhl et al. 2016c]
and [Santini et al. 2018].

3 METHOD

The proposed algorithm is based on the oriented edge optimization
formulation from [Fuhl et al. 2017]. Their method was for eyelid
detection; it used different heuristics to find initial positions before
the optimization was applied to reduce computational costs. In the
original formulation, two polynomials were refined by optimizing
their overall oriented edge response. Therefore, the equation shifted
three points per polynomial, where two points were shared by both
polynomials (eye corners).

Inner
a

Figure 1: Explanatory example for the variables in equa-
tion 1.

In contrast, our approach uses edges on multiple circular shapes.
For each shape, the oriented edge value is computed. The main
advantage of our formulation is that multiple shapes contribute to
the final result. Meaning, ellipses are contained in multiple circle
shapes. This step reduces the computational costs in contrast to
evaluating each elliptical shape separately. Furthermore, our ap-
proach can deactivate single oriented edges, which reduces the
runtime drastically and will be described in the unsupervised boost-
ing section.

However, we use circles as the base function (C()). At each point
on a circle, we compute the gradient orthogonal to the tangent
(A). These points are described by the center point of the circle
(p), the radius of the circle (r), and an angle (a). These variables
together with an explanatory visualization of equation 2 are shown
in Figure 1. This oriented-edge optimization is described as

Tmax
argmaxp

2
/ L(AC(p, r, a)) drda, (1)
a=0

r=Imin
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where rymin and rypgx are the minimal and maximal radii of cir-
cles; two and twenty four in our implementation, respectively. The
function L() evaluates the gradient as

inner < outer 1
L= )
else 0,

where inner and outer are the inner and outer pupil regions for a
particular direction, as exemplified in Figure 1. The pupil center
is not detected based on the gradient magnitude, but rather on
the sum of gradients supporting the center. Consequently, this
approach is less sensitive to low contrast images and reflections. In
Equation 2, inner and outer stand for the sum of intensity values
collected inside and outside of the circle per gradient.

Input
Compute all gradients
for each pixel position

Iteration 1

Compute all gradients
for each pixel position

Tteration 2

Select maximum
Final result

Figure 2: The algorithmic work flow of the optimization for
two iterations.

Figure 2 shows the workflow of our approach. In the first it-
eration, all gradients for each image pixel position are computed
(Equation 1). The resulting probability map is then used as input
for the second iteration. This again results in a probability map
where most of the noise is removed. The entire iterative process
can be understood as a circle shrinking procedure. The final pupil
center is obtained by selecting the pixel position with the highest
probability.

The process of computing all gradients for each pixel position
is computationally demanding. To overcome these computational

costs, often a coarse positioning is proposed (e.g. Haar cascades [Swirski

et al. 2012]), where only the surrounding region is evaluated. Al-
though this approach is applicable to our algorithm, we propose to
use unsupervised boosting on a recorded eye video without further
annotations.

3.1 Unsupervised Boosting

The particular property behind this approach is to select only the
most important positions on the circle outline for computation
(Figure 3(b) red lines). Therefore, we evaluate each frame in a video
and increase the score for each oriented gradient that voted for this
center position (Histogram in Figure 3(a)). Finally, only a percentage
is enabled for the final detector (Figure 3(b) red lines are enabled
and the others are disabled).
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Figure 3: In (a) the computation of the gradient score is
shown. The red bars in the histogram represent the score
per gradient. The selection process, in comparison to the us-
age of all gradients is shown in (b). Scores colored in ochre
are disabled.

L(AC(p,r,a)) > 0,
S(r.a,p, fp) = {10 = fpl < dsp i
3.0

+€

3
else 0

Equation 3 formalizes the scoring function, in which fp rep-
resents the pupil center position found by the proposed method
(white dot in Figure 3(a)). With ||, we refer to the Euclidean distance,
where € denotes a small constant to avoid division by zero. d;j, de-
termines the size of the region is used for collecting the score of
each gradient (red circle in Figure 3(a)), which we have empirically
set to three.

The main advantage of our approach is that the resulting per-
formance of the algorithm is adjustable to the needs of the user
and to the available hardware. In addition, the algorithm can be
calibrated to each user during the calibration procedure for the
gaze estimation. In contrast, the boosting relies on the accurate
detection of the entire approach. Therefore, if the algorithm has a
low overall detection rate on the video, the boosting step would
fail as well.

4 EVALUATION

Detecting the pupil center in remote images is a non-trivial task. The
detected regions vary regarding their size and position. Therefore,
we increased the size of each annotated eye box by 20% in each
direction to provide a similar condition for all cases. This step
influences algorithm runtime and adds an extra challenge for the
detection algorithms. We compared the proposed approach against
five state-of-the-art algorithms [Droege and Paulus 2010; Fuhl et al.
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2016b; George and Routray 2016; Skodras and Fakotakis 2015; Timm
and Barth 2011] on the above mentioned publicly available data
sets. The error is reported in pixels, measured as the Euclidean
distance between the annotated and the algorithmically detected
pupil center.

4.1 Data sets

For evaluation, we used four publicly available datasets. Those are
BioID [Jesorsky et al. 2001], GI4E [Villanueva et al. 2013], [Fuhl
etal. 2016a] and MUCT [Milborrow et al. 2010]. The BioID [Jesorsky
et al. 2001] dataset contains 1521 grayscale images from 23 subjects
recorded in an office environment. Each frame has a resolution
of 384 x 286 pixels. For the GI4E [Villanueva et al. 2013] data set
each frame has a resolution of 800 X 600 pixels and it contains 1236
RGB images from 103 subjects. These images were recorded using a
standard web camera and include challenges such as reflections on
the subject’s glasses. The data set from [Fuhl et al. 2016a] contains
445 RGB and near infrared images of two subjects with a resolution
of 1280 X 960 pixels. These images were recorded inside an office
with a pan tilt zoom camera. The main challenges in this data set
are different distances, head rotations, blinks, and reflections. The

last data set is MUCT [Milborrow et al. 2010] with 3755 images.
Each frame has a resolution of 480 X 640 pixels and is in RGB.

The main challenges in this data set are changes in the lighting

conditions, reflections, glasses, and different distances of the subject.

In addition, the subjects are of different age and ethnicity.

4.2 Results

BIOID GI4E
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Figure 4: Evaluation results for all algorithms separated per
data set. The detection percentage of 1 corresponds to 100%.

Figure 4 shows the results of the evaluated algorithms for each
data set separately. As can be seen from the Figure, the proposed
approach outperforms the state-of-the-art for both accuracy and
detection rate. For the data set proposed in [Fuhl et al. 2016a],
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(Figure 4 (d)) our algorithm has lower accuracy with regard to the
Euclidean distance ranging from seven to eleven pixels compared
to the algorithm in [Skodras and Fakotakis 2015]. However, we
argue that for a pixel distance of four, the error is already too
large for the gaze estimation to be useful in remote scenarios. The
influence of the enlarged region for the pupil center detection can
be seen especially in Figure 4(a). Here, all algorithms evaluated
in [Fuhl et al. 2016a] show greatly reduced detection rates. The
runtime of all algorithms is shown in Table 1. As can be seen,
the method from Droege [Droege and Paulus 2010] is the fastest,
followed by ElSe [Fuhl et al. 2016a]. The proposed approach needed
fifteen milliseconds for all circle evaluations. However, boosting the
percent of oriented edges to either ten or five percent reduces the
runtime to approximately two milliseconds. The final performance
boost to reach a runtime below one millisecond is obtained by
storing all indexes for each image position and removing all online
memory allocations in the code.

Table 1: The runtime of each algorithm measured on the
GI4E data set. 10% mean boosted so that only this percent-
age of gradients is remaining and PI denotes precomputed
indexes.

Droege Timm Anjith ElSe Skodras  Proposed

09ms 88lms 5lms 8ms 65ms 15ms
1.9ms (10%)
0.8ms (PI)

Table 2 reports the impact of the boosting percentage to the
accuracy and the runtime. For a small percentage, the accuracy is
increased. Deactivating larger amounts of gradients reduces the
accuracy, but also the runtime.

Table 2: The runtime and accuracy per boosting percentage
on the GI4E data set with precomputed indexes for one iter-
ation.

Boosting (%) | 0 20 40 60 80 90
Runtime (ms) | 54 46 36 24 11 06
Detection (3px,%) | 93.4 93.7 934 93.0 90.6 839

5 CONCLUSION

In this work, we proposed an adaptable remote pupil detection
algorithm. It iteratively improves the result and is formulated as
an optimization equation. It outperforms the state-of-the-art algo-
rithms in terms of accuracy, detection rate, and runtime. The main
advantage of the proposed approach is the unsupervised runtime
adaption, which makes it usable for micro-controllers or other low
performance computers. Further research will outline extraction
of the detected pupil as well as evaluate the applicability to head
mounted images. A compiled library with example code together
with a version that applies an ellipse fit can be downloaded from:
http://www.ti.uni-tuebingen.de/Pupil-detection.1827.0.html.


http://www.ti.uni-tuebingen.de/Pupil-detection.1827.0.html

BORE: Boosted-oriented edge optimization for pupil detection

REFERENCES

Mansour Asadifard and Jamshid Shanbezadeh. 2010. Automatic adaptive center of pupil
detection using face detection and cdf analysis. In Proceedings of the International
MultiConference of Engineers and Computer Scientists, Vol. 1. 3.

T. J. Atherton and D. J. Kerbyson. 1999. Size invariant circle detection. Image and
Vision computing 17, 11 (1999), 795-803.

C. Braunagel, E. Kasneci, W. Stolzmann, and W. Rosenstiel. 2015. Driver-Activity
Recognition in the Context of Conditionally Autonomous Driving. In 2015 IEEE
18th International Conference on Intelligent Transportation Systems. 1652-1657. https:
//doi.org/10.1109/ITSC.2015.268

D. Droege and D. Paulus. 2010. Pupil center detection in low resolution images. In
Proceedings of the 2010 Symposium on Eye-Tracking Research & Applications. ACM,
169-172.

Wolfgang Fuhl, David Geisler, Thiago Santini, Wolfgang Rosenstiel, and Enkelejda
Kasneci. 2016a. Evaluation of State-of-the-art Pupil Detection Algorithms on
Remote Eye Images. In Proceedings of the 2016 ACM International Joint Conference
on Pervasive and Ubiquitous Computing: Adjunct (UbiComp ’16). ACM, New York,
NY, USA, 1716-1725. https://doi.org/10.1145/2968219.2968340

W. Fuhl, T. Santini, and E. Kasneci. 2017. Fast and Robust Eyelid Outline and Aperture
Detection in Real-World Scenarios. In 2017 IEEE Winter Conference on Applications
of Computer Vision (WACV). 1089-1097. https://doi.org/10.1109/WACV.2017.126

W. Fuhl, T. C. Santini, T. Kiibler, and E. Kasneci. 2016b. ElSe: Ellipse Selection for
Robust Pupil Detection in Real-world Environments. In Proceedings of the Ninth
Biennial ACM Symposium on Eye Tracking Research & Applications (ETRA '16). ACM,
New York, NY, USA, 123-130.

Wolfgang Fuhl, Marc Tonsen, Andreas Bulling, and Enkelejda Kasneci. 2016¢. Pupil
detection for head-mounted eye tracking in the wild: an evaluation of the state of
the art. Machine Vision and Applications 27, 8 (2016), 1275-1288.

A. George and A. Routray. 2016. Fast and Accurate Algorithm for Eye Localization for
Gaze Tracking in Low Resolution Images. arXiv preprint arXiv:1605.05272 (2016).

Kenneth Holmgvist, Marcus Nystrém, Richard Andersson, Richard Dewhurst, Halszka
Jarodzka, and Joost Van de Weijer. 2011. Eye tracking: A comprehensive guide to
methods and measures. OUP Oxford.

O. Jesorsky, K. J Kirchberg, and Robert W. F. 2001. Robust face detection using the haus-
dorff distance. In Audio-and video-based biometric person authentication. Springer,
90-95.

E. Kasneci. 2013. Towards the Automated Recognition of Assistance Need for Drivers
with Impaired Visual Field. Ph.D. Dissertation. University of Tiibingen, Wilhelmstr.
32, 72074 Tibingen. http://tobias-lib.uni-tuebingen.de/volltexte/2013/7033

Moritz Kassner, William Patera, and Andreas Bulling. 2014. Pupil: An Open Source
Platform for Pervasive Eye Tracking and Mobile Gaze-based Interaction. In Adjunct
Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubig-
uitous Computing (UbiComp ’14 Adjunct). ACM, New York, NY, USA, 1151-1160.
https://doi.org/10.1145/2638728.2641695

X. Liu, F. Xu, and K. Fujimura. 2002. Real-time eye detection and tracking for driver
observation under various light conditions. In Intelligent Vehicle Symposium, 2002.
IEEE, Vol. 2. IEEE, 344-351.

Gareth Loy and Alexander Zelinsky. 2003. Fast Radial Symmetry for Detecting Points
of Interest. IEEE Trans. Pattern Anal. Mach. Intell. 25, 8 (Aug. 2003), 959-973.
https://doi.org/10.1109/TPAMI.2003.1217601

S. Milborrow, J. Morkel, and F. Nicolls. 2010. The MUCT Landmarked Face Database.
Pattern Recognition Association of South Africa (2010). http://www.milbo.org/muct.

David A Robinson. 1963. A method of measuring eye movemnent using a scieral
search coil in a magnetic field. Bio-medical Electronics, IEEE Transactions on 10, 4
(1963), 137-145.

Thiago Santini, Wolfgang Fuhl, and Enkelejda Kasneci. 2018. PuRe: Robust pupil detec-
tion for real-time pervasive eye tracking. Computer Vision and Image Understanding
(Feb 2018). https://doi.org/10.1016/j.cviu.2018.02.002

Evangelos Skodras and Nikos Fakotakis. 2015. Precise Localization of Eye Centers
in Low Resolution Color Images. Image Vision Comput. 36, C (April 2015), 51-60.
https://doi.org/10.1016/j.imavis.2015.01.006

L. Swirski, A. Bulling, and N. Dodgson. 2012. Robust real-time pupil tracking in
highly off-axis images. In Proceedings of the Symposium on Eye Tracking Research &
Applications (ETRA). ACM, 173-176. https://doi.org/10.1145/2168556.2168585

Te Tan, Jan Philipp Hakenberg, and Cuntai Guan. 2013. Estimation of glance from
EEG for cursor control. In Engineering in Medicine and Biology Society (EMBC), 2013
35th Annual International Conference of the IEEE. IEEE, 2919-2923.

F. Timm and E. Barth. 2011. Accurate Eye Centre Localisation by Means of Gradients.
VISAPP 11 (2011), 125-130.

A.Villanueva, V. Ponz, L. Sesma-Sanchez, M. Ariz, S. Porta, and R. Cabeza. 2013. Hybrid
method based on topography for robust detection of iris center and eye corners.
ACM Transactions on Multimedia Computing, Communications, and Applications
(TOMM) 9, 4 (2013), 25.

ETRA ’18, June 14-17, 2018, Warsaw, Poland


https://doi.org/10.1109/ITSC.2015.268
https://doi.org/10.1109/ITSC.2015.268
https://doi.org/10.1145/2968219.2968340
https://doi.org/10.1109/WACV.2017.126
http://tobias-lib.uni-tuebingen.de/volltexte/2013/7033
https://doi.org/10.1145/2638728.2641695
https://doi.org/10.1109/TPAMI.2003.1217601
http://www.milbo.org/muct
https://doi.org/10.1016/j.cviu.2018.02.002
https://doi.org/10.1016/j.imavis.2015.01.006
https://doi.org/10.1145/2168556.2168585

	Abstract
	1 Introduction
	2 Related Work
	3 Method
	3.1 Unsupervised Boosting

	4 Evaluation
	4.1 Data sets
	4.2 Results

	5 Conclusion
	References

