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ABSTRACT
A growing field of studies in eye-tracking is the use of gaze data
for realtime feedback to the subject. In this work, we present a
software system for such experiments and validate it with a visual
search task experiment. This system was integrated into an eye
tracking analysis tool. Our aim was to improve subject performance
in this task by employing saliency features for gaze guidance. This
realtime feedback system can be applicable within many realms,
such as learning interventions, computer entertainment, or virtual
reality.

CCS CONCEPTS
• Human-centered computing → Interaction paradigms; •
Applied computing→ E-learning;
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1 INTRODUCTION
In many real-world situations, we are confronted with visual dis-
plays where information needs to be extracted and interpreted.
Often, it is almost unavoidable that important details are missed,
as the human eye and brain can only process parts of the screen
at a time [Jarodzka et al. 2012]. We are limited due to the fovea
restricting our field of view: where we see sharply within two de-
grees [Holmqvist et al. 2011]. Therefore, visual search merges our
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fixations in order to perceive all present information. To stimulate
perception, we can learn how to spread our attention more effec-
tively. Effective gaze guiding can be implemented as graphical user
interfaces or other visual feedback forms and has shown promising
outcomes in a range of professions. For instance, in air traffic con-
trol [Mackworth 1948], piloting a vehicle [Wetzel et al. 1998], and
reading medical imagery [Jarodzka et al. 2012]. Here, task detection
and interpretation under certain circumstances is not only time
consuming to learn, but can also be safety critical.

Gaze guidance or supportive highlighting of on-screen infor-
mation can help in a number of scenarios. For instance, teaching
systematic search of medical x-ray images [Kok et al. 2016; Kundel
and La Follette Jr 1972; Van der Gijp et al. 2017]. Additionally, in air
traffic control simulation, where stimuli is dynamic, gaze guidance
highlights the relevant information as it appears [Mackworth 1948].

These attentional guiding systems not only highlight relevant
information areas, but also needs to account already perceived
information [Jarodzka et al. 2013]. From the literature, it is known
that eye tracking offers insight into a user’s perception through
their gaze behavior [Holmqvist et al. 2011]. Thus in this work, we
focus on effective visualization of online gaze behavior. Specifically,
realtime gaze feedback that visualizes already viewed regions and
incorporates more information from the periphery.

2 RELATEDWORK
Employing eye movement data in the educational context has of-
fered insight into how to model gaze. Most notable are the eye
movement modeling examples (EMMEs); Where visual guidance to
directly influence gaze behavior was employed by Jarodzka et al.,
in order to increase subjects’ interpretation performance of medical
records [Jarodzka et al. 2012] and a biological classification task
[Jarodzka et al. 2009, 2013]. For [Jarodzka et al. 2012], eye move-
ment data of experts were visualized by blurring areas they did not
look at: i.e. non-relevant information. For [Jarodzka et al. 2009],
experts’ gaze was visualized as yellow circles on a stimulus image.
For both studies, the model example incorporated gaze data post
hoc.

Qvardfort and colleagues [Qvarfordt et al. 2010] found that ap-
plying white circular occlusions to fixations from a previous free-
viewing over the stimuli was able to reduce the workload during a
visual search task while increasing the true positive rate of targets
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found [Qvarfordt et al. 2010]. Thus, participants were able to notice
areas that they did not search in the free-viewing phase because
the already search areas were occluded.

ScreenMasker [Orlov and Bednarik 2016] is a open source soft-
ware by Orlov and Bednarik intent on developing a customizable
system that visualizes gaze behavior. Their gaze contingent system
creates a pattern mask over the on screen stimuli. Then, it uses gaze
coordinates from the eye tracker to subtract the pattern, or unmask,
where the subject is gazing in real time. For this system, an NVIDIA
graphics card with CUDA framework was used and was shown to
perform with very low latencies [Orlov and Bednarik 2016]. Thus,
offering low to none temporal offset that could disturb a user.

We propose a platform integrated in a publicly available eye
tracking analysis tool. The multiple plugins integrated offer an ex-
perimental center and a realtime gaze feedback option. Our system
was tested and capable of running an a standard computer.

3 SOFTWARE DEVELOPMENT
Eyetrace [Kübler et al. 2015] is a software providing state-of-the-art
algorithms for eye tracking data visualization, statistical analysis,
event detection, AOI generation, saccade clustering, and scanpath
analysis and supports a variety of eye trackers. All algorithms are
parameterizable and the parameters together with the visualization
and statistics can be exported. Therefore, we decided to extend
this existing software, which is publicly available at http://www.ti.
uni-tuebingen.de/Eyetrace.eyetrace.0.html

For our experiment (detailed in section 4), we used the EyeTribe
eye tracker [Ooms et al. 2015] since it was already supported by
Eyetrace. We extended this plug-in to support online usage whereas
previously, only recording and importing the eye tracking data
was available. The developed application interface also allows for
extending the plugin to other eye trackers and online calibration.

3.1 The Experimenter
The Experimenter plug-in for EyeTrace was developed for creating
and performing remote eye tracking experiments. The central part
is the Designer widget, shown in figure 1, which has the following
capabilities:

• Create and modify the experiment design where each index
block is highly customizable (Figure 1 area 1 and 2).

• Import and export experiment designs as CSV file (Figure 1
area 2).

• Record subject data together with name, group and dominant
eye (Figure 1 area 3).

• Select the Eyetracker to be used (Figure 1 area 4).
• Select an interruption key (Figure 1 area 5).
• Start/cancel the experiment run (Figure 1 area 5).

In the Experimenter, a researcher canmanually organize an exper-
iment design offering customization of stimuli, time of presentation,
gazefeedback, and keypress interruptions. These experimental de-
signs can be exported and saved as a CSV file, for additional data
collection. Additionally, the ability to import experiment designs
in CSV file format allows for the option of autogenerating random-
ized experiment designs with a simple script in any programming
language with CSV parsing libraries or text editor.

Figure 1: DesignerWidget GUI. Here, experiments can be de-
signed, andmanaged. The workflow of the experiment is or-
ganized (1) and can be modified (2) and each participant’s
data is defined (3). For each experiment, an eye tracker is
selected (4) as well as a key for interruption (5).

Each step of the experiment design can either be a calibration, or
a stimulus presentation/recording. In calibration, the eyetracker’s
calibration from the API is employed. In stimulus presentation, the
durations (in milliseconds), the filepaths (if none is chosen, a white
screen will be displayed), and whether the step is interruptible
through keypress are customizable. The interruptible option is
optimal for experimental designs where reaction-time or decision-
making tasks are evaluated. Additionally, the researcher can also
present the online gaze feedback for any number of stimuli, as
described further in section 3.2.

The ‘Start’ button in theDesignerwidget initiates the experiment:
Data logging starts here as well. Stimuli are shown in the Presenter
widget, a second full screen widget that gets called. Ideally, if the
researcher has two monitors, the main window of Eyetrace and
the Designer widget can be displayed to the researcher and the
participant only sees the Presenter widget. The researcher can
always cancel the experiment with the Designer widget’s ‘Cancel’
button. Otherwise, the Experimenter runs through the designed
stimuli list and terminates at the end, closing the Presenter widget.

On the data handling side, timestamps, gaze coordinates, and
keypresses are recorded in a log file. Internally, they are stored in
a data structure for the experimental session for later calculations
and analyses.

3.2 Realtime Feedback
In the realtime feedback, the user’s gaze data is visualized on the
screen as he or she is performing a task. In order to achieve low
and relatively constant response times of the feedback system,
intermediate results are stored in a cache. Then, the system only
has to process new gaze data when it is repeatedly called.

Triggered by a timer, every 7ms (approximately 144Hz) the
screen drawingmethod of the Presenter widget gets called to update
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Figure 2: Screenshot of an experiment trial, showcasing the
‘cover’ (a) and ‘uncover’ (b) feedback condition. Stimulus:
Ilya Repin, “Unexpected Visitors”, 1884-1888. Oil on canvas.
public domain https://commons.wikimedia.org/wiki/.

the screen content. This trigger calls the currently active realtime
feedback implementation to draw over the stimulus.

Presently, two feedback algorithms are implemented, plus the
default ‘no feedback’ condition. First, the ‘cover’ feedback occludes
the user’s gaze coordinates on the stimulus with opaque circles as
illustrated in figure 2a. Second, the ‘uncover’ feedback unoccludes
a semitransparent cover in a similar manner to the former con-
dition as illustrated in figure 2b. Essentially, this feedback is the
complement of the former applied to the mask overlay. For both
conditions, there is no decay of feedback for older gaze points.

Both feedback conditions use a white mask-like image overlayed
over the original stimuli, and the feedback effects the masks’ alpha
channel, meaning its opacity is changed. Each event where the
Realtime Feedback class is called, the list of new gaze points is
run through and circles are drawn on the mask overlay for each
new gaze point coordinate. For a video recording illustrating both
the ‘cover’ and the ‘uncover’ feedback methods, please refer to the
supplementary materials.

In both feedback conditions, the mask is either transparent (for
covered) or semi-transparent (for uncovered). the alpha channel
on this map is then changed based on the gaze coordinates. The
compositing method adds or subtracts the circle’s alpha values to
the existing mask corresponding to gaze coordinates, giving the
effect of decreasing or increasing transparency the longer the sub-
ject looks at a certain spot. However, a lower bound threshold is
given to the circle’s alpha value to prevent any part of the stim-
ulus becoming invisible. Each circle consists of a radial gradient,
projecting outwards from the circle’s center to its edge. This effect
makes the feedback appear smoother, removing distracting, sharp
edges (see figure 2). The compositing method updates the mask
with the new gaze points each time the trigger timer event takes
place. Then, the mask gets drawn over the stimulus.

3.3 Gaze Behavior with Feedback
In order to evaluate our online gaze feedback system, we measured
performance in a visual search task with the feedback as an indepen-
dent variable. We propose that both the cover and uncover feedback
conditions will affect gaze behavior compared to no feedback at all.

The cover feedback method could have two effects. One, subjects
may be less likely to look a second time at areas of the stimulus they
already looked at, as the saliency gets decreased after looking the

Figure 3: An example stimuli, as used in the experiment. In
this case, subjects had to decidewhether there is a red square
visible or not. Stimuli was presented at full resolution. On
the right, are the respective sizes for cover small (orange)
and cover large (purple) conditions.

first time. Meaning their time to scan the image is shorter resulting
in shorter reaction times. Two, subjects will have longer saccades,
as the feedback includes distractors in the periphery of what is
currently being fixated, which otherwise might have been the area
of the next fixation.

Additionally, the uncover feedback could result in subjects’ scan-
ning behavior becoming more systematic because the saliency is
being reduced, resulting in fewer inconsistent saccades across the
stimulus. This systematic search behavior effect was also found in
[Jarodzka et al. 2013], the spotlight condition (where non relevant
information is blurred) resulted in faster, more efficient detection
of relevant information.

4 METHODS
For our experiment, we used a Windows 10 computer with a 27
inch monitor (resolution 1920 × 1080 pixel) as display device, and
the Eyetribe eyetracker. Evaluation of the Eyetribe with regards to
scientific usability can be found in the literature [Dalmaijer 2014;
Ooms et al. 2015].

The visual search task was performed with images consisting of
either 80 distractors (target absent) or 79 distractors plus the target
item (target present). An example image is shown in figure 3. In
total, 100 images were generated 1. Order of stimuli presentation
was randomized for each participant.

For each stimuli, the target item was centered on screen for
1.5 seconds. Following target presentation, a fixation cross was
visualized for 0.5 seconds, and then the stimulus presentation. To
signal their decision, participants pressed a button on the keyboard:
Either keypress m (right index finger) for target present, or keypress
y (left index finger) for target absent.

The feedback methods, as introduced in section 3.2, were pa-
rameterized the following way. For each of the two feedback types
(uncovering, covering), we chose two diameters: 100 or 200 pixel
diameter. The control condition was no gaze feedback. Conditions,
in conjunction to order of stimuli, were randomized to allow for a
within-subject evaluation.

A total of 18 participants (17 university students; five wore
glasses) took part. They were positioned roughly 60 cm away from
the screen. A 9-Point calibration was performed using the Eye-
Tribe’s calibration software. Following the experiment, participants
1The images had equal distribution of color and shape of the target item, and its
absence/presence.

https://commons.wikimedia.org/wiki/
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Table 1: Reaction times for correct answers when target was
absent. t-test is between intervention and control condition.
‘*’ indicates a significant result.

condition µ [ms] σ [ms] t-value p

Target absent
control 5256.49 2715.04 n.a.
uncover small 5144.21 2531.49 0.39 0.70
uncover large 5213.20 2430.17 0.16 0.88
cover small 5198.08 2370.27 0.21 0.83
cover large 4693.89 1897.47 2.28 0.02*

filled out a self-report regarding perceived performance and expe-
rience.

Eye movement data was evaluated in Eyetrace. Fixations were
calculated with the I-DT algorithm [Salvucci and Goldberg 2000]
with the following parameters: minimum duration of 50ms, maxi-
mum radius of 20 pixel, maximum outliers of 0. Saccades were then
calculated as the spatial representation between two fixations. In
addition to eye movement data, response error rate and reaction
time for were calculated. Reaction time was defined as time between
onset of stimulus to keypress.

5 RESULTS
From the questionnaire responses, it was found that self reports
of effectiveness and helpfulness for both feedback conditions did
not significantly differ compared to the control condition of no
feedback.

Participant behavior for each experimental trial where they re-
sponded correctly was evaluated. Only 4.3% of the total trials were
excluded because they were incorrect responses. A low correlation
(r = 0.31) ruled out any effect of target distance from center fixation
cross on reaction time.

5.1 Performance
The reaction times for target absent trials ( µabsent = 5095.12ms,
SDabsent = 2405.44ms) were significantly longer than for the target
present trials (µpresent = 2254, 12ms, SDpresent = 1346.08ms: t =
−30.16, p < 0.001).

Regarding feedback intervention and reaction time, it was found
that when the target was absent, the cover large (200 pixel diameter)
condition had significant differences in reaction time. The Welch’s
unequal variances t-test2 as shown in Table 1 found that this con-
dition had significantly shorter reaction times (t = 2.28,p = 0.023).

When the target was present, reaction times were overall shorter,
though there was no significant differences between feedback con-
ditions here.

5.2 Gaze Behavior
Similar to reaction time, the effect of target absent or present on
numbers of saccades was highly significant. Where there were more
saccades when the target was present (µpresent = 16.75, SDpresent =

2Welch’s unequal variances t-test pools together all values for each condition, meaning
sample sizes are larger, which increases the statistical power.

Table 2: Mean and standard deviation for saccade length. t-
test is between intervention and control condition. ‘*’ indi-
cates a significant result with p < 0.05, ‘**’ for significance
level p < 0.005.

condition µsac [px] σsac [px] t-value p

control 313.84 148.48 n.a.
uncover small 329.26 157.14 -2.16 0.045*
uncover large 333.11 152.79 -2.52 0.022*
cover small 344.18 164.12 -3.11 0.006*
cover large 333.19 150.23 -3.31 0.004**

Table 3: Mean and standard deviation for number of fixa-
tions needed to complete the task for each of the five con-
ditions, split for target is absent. t-test between control and
intervention condition, ‘*’ indicates a significant result.

condition µ σ t-value p

Target absent
control 17.36 9.53 n.a.
uncover small 17.19 10.99 0.22 0.83
uncover large 16.86 8.99 0.78 0.45
cover small 16.30 9.67 2.31 0.03*
cover large 16.08 8.07 1.61 0.13

9.32) than when the target was absent ( µabsent = 7.44, SDabsent =
3.47: Welch’s unequal variances test, t = 8.85, p < 0.001). However,
feedback conditions showed no significant effect on number of
saccades.

More interesting, saccade length was affected by the feedback.
Here, the Welch’s unequal variances t-test (values in table 2) also
reported significant differences for feedback conditions compared to
control, where the feedback conditions had longer saccade lengths.

Concerning fixations, fixation duration was not significantly dif-
ferent between control (µcontrol = 118.47ms, SDcontrol = 49.45ms)
and all feedback conditions (For example, µcoverLarge = 116.67ms,
SDcoverLarge = 40.34ms: t = 0.99,p = 0.34).

Similar to saccades and reaction times, the number of fixations
was higher for target absent.Where for both controls: target present
(µpresent,control = 7.22, SDpresent,control = 3.07) and target absent
(µabsent,control = 17.36, SDabsent,control = 9.53).

There were no significant differences between feedback and
control condition when the target was present. However, when
the target was absent (see table 3), an effect for the cover small
feedback (diameter 100px) condition was found. Although there
were no significant differences, a trend can also be seen for less
fixations in the cover and uncover large conditions compared to
the control.

6 DISCUSSION
Generally, it took subjects longer to correctly decide if a target is
absent, than it took them to decide if a target is present. The differ-
ence was highly significant; this experimental result reproduces a
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well documented effect of target presence or absence on reaction
time [Chun and Wolfe 1996; Wolfe et al. 1989].

Concerning how the intervention influenced subject behavior,
we can see that even with our rather simple feedback methods,
we were able to induce a change in subjects. An increase in pe-
riphery employed is apparent from the longer saccades for both
covering and uncovering interventions. However, only the cover
large condition, where a semi-transparent circle with a 200 pixel
diameter overlayed on the gaze coordinates, increased reaction
times when the target was accurately determined as absent. There
was also a trend for less fixations when determining the target was
absent for both cover and uncover (where the circle uncovers a
semi-transparent overlay) large feedback conditions, though signif-
icantly less fixations were only found in the cover small (100 pixel
diameter) feedback condition. Therefore, the realtime gaze based
feedback algorithms developed for the system produced and effect
on gaze behavior in the visual search task.

Interestingly enough, the self-reports from the participants did
not indicate that the feedback helped or improved their perfor-
mance. In contrast, their reaction times as well as their eye move-
ment differences showed that gaze feedback indeed affected their
behavior compared to no gaze feedback. Participants also reported
that none of the feedback conditions were distracting in any way.
Therefore, the gaze feedback system we developed appears to be
unobtrusive, yet effective.

Regarding a more effective gaze model, the current experiment
found that the large cover affected reaction time for target absent
being correctly determined. However, overall correct detection was
extremely high at 96%. Future work into effective gaze modeling
could look into more complex visual search tasks to see whether
gaze modeling improves performance.

Jarodzka and colleagues [Jarodzka et al. 2013] found that using
either the spotlight condition (where non relevant information is
blurred) or the dot condition for EMMEs were both effective in
modeling gaze behavior. However, each condition affected a certain
aspect of learning and performance, where the spotlight condition
affected visual search and the dot condition affected interpretation
[Jarodzka et al. 2013]. In our system, the uncover feedback algorithm
is relatively similar to their spotlight condition, where both present
a clear unaffected gaze area, and occlude the other areas ([Jarodzka
et al. 2013]: blurring, ours: opaque mask). Additionally, [Jarodzka
et al. 2013]’s dot condition is similar to our cover condition; however,
ours covers the gaze area with a semi-transparent mask that does
not hide the stimulus information underneath. Whether our online
gaze feedback would be beneficial for learning environments is of
great interest in future research.

7 CONCLUSION
In this work, we introduced a novel software system for eyetracking
experimentation, which allows realtime feedback to the subject.
We successfully validated the implementation in a visual search
task study. The current system was integrated into our eye tracking
analysis tool EyeTrace. Now, this tool provides experimental design
and testing in addition to the analysis and visualization of eye
tracking data.
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