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RemoteEye: An open-source high-speed remote eye tracker
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Abstract
The increasing employment of eye-tracking technology in different application areas and in vision research has led to an
increased need to measure fast eye-movement events. Whereas the cost of commercial high-speed eye trackers (above 300
Hz) is usually in the tens of thousands of EUR, to date, only a small number of studies have proposed low-cost solutions.
Existing low-cost solutions however, focus solely on lower frame rates (up to 120 Hz) that might suffice for basic eye
tracking, leaving a gap when it comes to the investigation of high-speed saccadic eye movements. In this paper, we present
and evaluate a system designed to track such high-speed eye movements, achieving operating frequencies well beyond 500
Hz. This includes methods to effectively and robustly detect and track glints and pupils in the context of high-speed remote
eye tracking, which, paired with a geometric eye model, achieved an average gaze estimation error below 1 degree and
average precision of 0.38 degrees. Moreover, average undetection rate was only 0.33%. At a total investment of less than
600 EUR, the proposed system represents a competitive and suitable alternative to commercial systems at a tiny fraction of
the cost, with the additional advantage that it can be freely tuned by investigators to fit their requirements independent of
eye-tracker vendors.
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Introduction

A quick look around any modern-day eye-tracking lab
reveals the presence of low-cost eye trackers for capturing
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eye movements in a wide variety of studies. For instance,
in interactive applications (Hansen, Alapetite, MacKenzie,
& Møllenbach, 2014; Kangas et al. 2014; Hansen, Ahmad,
& Mardanbegi, 2014; Canare, Chaparro, & He, 2015;
Ramos, Hanada, Da Graça, Pimentel, & Teixeira, 2017)
and eye movements data analysis experiments (Rodrigue,
Son, Giesbrecht, Turk, & Höllerer, 2015; Zhang, Fan, Yuan,
& Peng, 2015; Coyne & Sibley 2016; Sari, Santosa, &
Wibirama, 2017; Murugaraj & Amudha 2017; Jbara &
Feitelson 2017) rely on these devices. The most commonly
used technique for building such eye trackers is video
oculography (VOG), which includes an image processing
algorithm to detect the pupil and/or corneal reflections
(named glints) based on an eye’s images recorded by a
video camera with or without infrared (IR) illumination.
While low-cost eye trackers such as the Eye Tribe Tracker,
Tobii EyeX, and Pupil Labs are becoming more common in
different research fields, several authors have pointed out the
restrictions of these eye trackers (Funke et al. 2016; Ooms,
Dupont, Lapon, & Popelka, 2015; Santini, Niehorster, &
Kasneci, 2019). Results from Funke et al. (2016) showed
that—compared to commercial high-cost systems—these
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low-cost eye trackers have moderate accuracies close to
2 degrees (e.g., faceLAB with 1.93 or Smart Eye Pro
with 2.4), though they suffer from high rates of data loss
(approximately 22% lost data). The lack of high-speed eye
trackers is another limitation of further significance. To
our knowledge, all existing low-cost eye trackers are built
with slow-frame-rate cameras ranging anywhere between
30 and 120 Hz. Low sampling frequencies hinder the
applicability of low-cost eye trackers for robust saccade and
microsaccade detection.

Moreover, Holmqvist et al. (2011) provided evidence that
saccade velocity and acceleration are not measured accu-
rately at lower sampling frequencies. As such, microsaccade
studies only use eye trackers with a sampling rate of 200
Hz or more (Holmqvist et al., 2011). Additionally, in sports-
related expertise studies, the classification of expertise is
usually based on fixations (mostly duration and number of
fixations). Also visual search strategies, like scene explo-
ration, are typically interpreted based on fixations (Mann,
Williams, Ward, & Janelle, 2007). High sampling rates lead
to more accurate detections of fixations compared to low
sampling systems, which have more temporal error and
cannot accurately detect rapid saccades (Andersson et al.,
2010).

Since 2010, high-end commercial eye trackers offer
1000–2000 Hz systems (tower-mounted); however, such
solutions usually cost too much for a small research
laboratory, limiting the research directions. Tracking eye
movements at such a high speed is problematic for a number
of reasons. First, and most important, are camera and optical
sensor limitations. With higher speed, there is less light
reaching the optical sensor as the shutter of the camera
closes earlier than with slow speed. A lower exposure time
leads to less illuminated images with lower contrast, which
makes feature detection harder. Another limitation is the
size and weight of high-speed cameras, as it is preventing
their usage in head-mounted eye trackers. Furthermore,
remote eye-tracking systems require high-resolution images
of the face and eyes to accurately estimate the pupil and
glint center. Additionally, we should also add the pricing
challenge: For instance, a 500-Hz Full-HD camera from
OPTRONIS (CR600X2-M-8G-GE-XM) runs currently at
the retail cost of about 10,000 euros.

Designing a high-speed eye tracker invites questions
concerning the time/accuracy trade-off: e.g., (1) what is an
optimal camera resolution where a pupil and glint detection
algorithm performs under 2–3 ms, and (2) to what extent are
current consumer computer resources (CPU, RAM, Hard
drive) capable of real-time eye tracking.

With these concerns in mind, the current work addresses
the design of an open-source, high-speed eye tracker—
involving hardware and software—in a remote-based
setting. As certain challenges are not entirely new in the

field of eye tracking and have been solved with other
methods, we first review papers that aim to design low-
cost high-speed eye trackers and point out their restrictions
in chapter “Related work”. More important, we propose
a novel approach for real-time glint and pupil detection
algorithms (chapter “System description”). In chapter
“Method” we describe the study we conducted to evaluate
the system. The results follow in chapter “Results” and in
chapter “Discussion” we discuss the results from the study
in reference to the strengths and weaknesses of the system.

Related work

Advances in digital imaging technologies have widely
impacted the availability of high-performance digital
cameras for researchers in the machine vision domain. This
rise was accompanied by a growing body of computer
vision studies examining different algorithms for detecting
eye features (e.g., pupil and glint) from images captured
by cameras (Fuhl, Tonsen, Bulling, & Kasneci, 2016;
Morimoto, Koons, Amir, & Flickner, 2000; Ebisawa 1970).
While robust and accurate detection of the pupil and glint
position is a key feature of an eye tracker, sampling
frequency is an important component in multiple areas,
such as microsaccade studies (Holmqvist et al., 2011). To
date, tower-mounted commercial eye trackers have been
developed that support 1000–2000 Hz monocularly or 500
Hz binocularly with average latencies of less than 2 ms
(Holmqvist et al., 2011). These solutions, however, remain
unaffordable for many researchers due to their pricing
options. Aiming to extend the application of high-speed
tracking into more appropriate price ranges, there is a small,
but growing, body of research that focuses on building such
eye trackers (Dera, Boning, Bardins, & Schneider, 2006;
Long, Tonguz, & Kiderman, 2007; Schneider et al. 2009;
Sogo 2013; Farivar & Michaud-Landry 2016).

Typically, open-source pupil and glint detection algo-
rithms have been developed for head-mounted trackers
(Fuhl et al., 2018; Fuhl, Santini, Kasneci, Rosenstiel,
& Kasneci, 2017; Li, Babcock, & Parkhurst, 2006; San
Agustin et al. 2010; Santini, Fuhl, & Kasneci, 2018; Sten-
gel, Grogorick, Eisemann, Eisemann, & Magnor, 2015;
Parada et al. 2015), where a low-cost web or lightweight
camera is used to capture eye images with 30–120 fps.
From the camera images, these eye trackers then employ
pupil-detection algorithms in conjunction with gaze esti-
mation. It is beyond both the scope and purpose of this
chapter to offer a complete coverage of eye-tracking algo-
rithms. Rather, our intent here is to highlight works about
state-of-the-art pupil-detection methods that report run-
times or have been explicitly designed for high-speed eye
tracking.
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To the knowledge of the authors, there is no systematic
investigation of the run time, but several papers (Fuhl
et al. 2016; Fuhl, Santini, Kübler, & Kasneci, 2016)
have measured the performance of various algorithms and
compared them with their own pupil-detection method.
For example, Fuhl et al. (2016) published their ElSe
algorithm—based on ellipse evaluation of a filtered edge
image—and achieved a 14.53% improvement on the pupil-
detection rate compared to other methods. ElSe was tested
on a common desktop computer (an Intel i5-4570, 3.2-GHz
CPU with a 60-Hz camera) and achieved a runtime of 7 ms
(∼140 Hz). However, there are no runtime measures for the
other steps in the eye-tracking pipeline (e.g., glint detection,
gaze estimation), which would extend the total runtime.
They reported 8 ms for Świrski, Bulling, and Dodgson
(2012), and 6 ms for ExCuSe (Fuhl, Kübler, Sippel,
Rosenstiel, & Kasneci, 2015) pupil detection methods. In
other words, any eye tracker using these algorithms will be
able to track eye movements with a sampling frequency of
30–120 Hz.

Another influential technical contribution to our under-
standing of the eye-tracking processes time-line can be
found in the work of Santini, Fuhl, Geisler, and Kasneci
(2017). Of significance is their report of software pipeline
latency using a Dikablis eye tracker with Windows 8.1
installed on a PC running on an Intel i5-4590, 3.30-GHz
CPU, with 8GB RAM. From the image acquisition on the
camera, to saving the videos on the hard drive, the whole
process took 17.25 ms (with a standard deviation of 2.07
ms). Similarly Kassner, Patera, and Bulling (2014) inquired
into the latency of the Pupil Pro Headset revision 022
tracker. They measured the latency based on 1200 succes-
sive samples on a Lenovo X201 laptop with an Intel Core i7
620M processor running on Ubuntu 12.04. They observed a
total latency of 124 ms (with a standard deviation of 5 ms).

Long et al. (2007) developed a head-mounted eye
tracker capable of tracking at 150 Hz. In their system,
the processing frame rate was increased by eliminating the
bottleneck of transferring and processing the entire image.
Their symmetric mass center algorithm was developed
over the naive center of mass algorithm. The processing
region was reduced using the location and the approximate
position of the pupil on a low-resolution image. Dera et al.
(2006) designed a large head-mounted eye tracker for 3DOF
real-time motion control of a head-mounted camera. They
identified the pupil by the brightness gradient between pupil
and iris followed by an edge search (Zhu, Moore, & Raphan,
1999). In their implementation, thresholding took 0.3 ms,
pupil search 0.7 ms, and edge detection took 1.1 ms. As
such, they were able to perform eye tracking in the range of
500–600 Hz (Schneider et al., 2009).

Another way to achieve a high-speed recording system
is to put a larger camera with higher frame rate in front

of the user (remote eye tracker). However, the image will
then include not only the eye region but also other regions
including the entire face and other background objects. As
such, additional image-processing techniques are required
to distinguish the eye region apart from other parts of the
image. Ebisawa (1998), for example, suggested using two
light sources and the image difference method for pupil
detection. The author argued that his method can detect the
pupil center every 1/60 s. Following the same technique as
Ebisawa (1998) and applying a 3D model-based method for
gaze estimation, Hennessey and Lawrence (2009) designed
a free head motion remote eye tracker that had an accuracy
of ±8 degree of visual angle. They used a monochrome
DragonFly Express from the former Point Grey Research
with a resolution of 640 × 480 pixels at 200 fps. Of
significance here is the Sogo (2013) GazeParser software.
The author reported the performance of his system by
comparing various sampling rates. The maximum sampling
interval reaches 4.0 ms in all measurement conditions. As
this value is twice the ideal value, the authors implied that
data loss might occur often. In their setup, they use one
PC for stimulus presentation and one for eye tracking that
are connected over ethernet. With frequencies of higher
than 400 fps, the recorder PC could not process camera
images in time during recording, as 99.5 % of the samples
needed at least 2.15 ms: Which corresponds to ± 470
fps. In a more recent study, Farivar and Michaud-Landry
(2016) used the GazeParser to achieve a sampling rate of
450 fps. In the results, they reported 4.99 ms latency when
recording images with high speed. They did not investigate
on methods of how to synchronize the gaze signal with the
stimulus frames and therefore reported a frame rate for the
gaze signal of 200 Hz.

Drawing on these insights from the literature, we present
a high-speed eye tracker. The focus of our development is
to achieve 2 ms or less for feature detection, so that real-
time eye tracking at 500 Hz is possible using a common
desktop computer. The contribution, specifically, is to share
our experience with a real-time glint and pupil detection
algorithm. We present a system that is capable of detecting
eye features at 570 Hz and above. To show that our system
is capable of tracking at such speed, we implemented the
full pipeline, including a calibration and gaze estimation
through a 3D eye model technique.

System description

Recording eye movement data based on VOG method
has relatively straightforward requirements; First, there is
a need for one or more cameras to capture eye images.
Second, there is a need for an algorithm to detect a few
distinguishable features from the eyes images. Especially
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Table 1 List of components for building the high-speed eye tracker

Components Quantity Description Price

Eye camera 1 IDS:UI-3130CP 400

Infrared emitter 9 SFH 4557 LED 5

IR filter 1 Optolite IR acrylic 5

Camera lens 1 Computer 12 mm 100

Resistor 3 180Ω 5

Camera tripod 1 any model 20

AC adapter 1 12V, 1A 5

The prices are in euros

for calculating the pupil center, there are different possible
features that can be used (e.g., limbus, pupil contour). In
this paper, we are detecting the pupil center directly from
a region of interest based on the glint detection. In the
following subsection, we describe our system.

Hardware design

To reduce the cost of the eye tracker (less than 600 euros),
we use only one camera. Moreover, IR emitters (LEDs)
are used to create glints and a dark pupil effect in the eye
images. Table 1 shows the components necessary to build
the eye tracker. The main challenge of building a high-speed
eye tracker is to find a suitable camera. Most of the high-
speed cameras are expensive or have a very low resolution.
We use a CMOS PYTHON 500 by ON Semiconductor with
a 1/3.6” global shutter sensor. A USB 3.0 monochrome
camera equipped with this sensor is able to work with 575.0
fps at 800 x 600 pixel resolution.

We use SFH 4557 LEDs (840 nm) from OSRAM Opto
Semiconductors Inc. for IR illumination, and Optolite Infra
Red Acrylic visible filter due to performance/cost ratio
(Instrument Plastics Ltd Optolite Infra Red Acrylic, n.d.) to
block the wavelengths less than 740 nm. Figure 1 shows
the eye tracker close to the computer screen. Based on the
Intersil IR safety guide, our LEDs have 0.8W/m2 irradiance
in total, which is far below the 100W/m2 limit (according
IEC 62471 (based on CIE S009)).1

We developed our eye-tracking system using a PC with
Intel I7, 7700k, 4.2 GHz and 16 GB RAM. Although we
tested our eye tracker using this computer, our results show
that there is no need for that much RAM or CPU power.

Software design

The whole system is written in C/C++ and uses OpenCV,
Qt and boost libraries. On startup, a user interface is shown

1https://www.intersil.com/content/dam/Intersil/documents/an17/
an1737.pdf

where calibration, gaze estimation, image or video upload,
and playback can be chosen. The user interface is built for
easy usage of the different processes (Fig. 2). All data are
saved inside a user folder. The preferred sequence of using
the system is as follows:

– Show face: At first the user should have a look at
the head position. The “show face” function opens the
camera and shows the users face with the pupil center
and glints detections mapped on the image (example
see Fig. 5). In this view, the user can already get an
impression of the detection quality and whether the
head should be adjusted for better position and focus in
the camera.

– Calibration: After adjusting the head position, a
calibration procedure is run in order to allow the system
to adjust the default values of the 3D eye model to
the user. This step is also necessary for each user to
train our pupil detection algorithm to learn the most
probable pupil sizes (explained in detail in chapter
“Pupil detection”) and afterwards the gaze estimation
algorithm can calculate the visual/optical axis based on
the estimates of the pupil and cornea diameter. This step
takes around 10-30 s.

– Then, the user can have a look at the calculated values
that are plotted onto the calibration pattern. As the
gaze estimation highly depends on the results of the
calibration, a shift or similar artifacts can be seen
in this screen. After calibration, the user has several
options.

– Gaze estimation evaluation: An optional gaze estima-
tion evaluation procedure for calculating the accuracy
and precision on unseen data can be chosen.

– Live Gaze: If the user wants to experience how well the
tracker works, he can start a live gaze overlay where he
can see his estimated gaze on the screen.

– Stimulus playback: If the user has uploaded an image
or video as stimulus, then he is able to playback this
stimulus while recording gaze in real time. As stimuli
can have different speeds, we synchronize the gaze and
stimulus by saving the timestamps of the gaze signal
when it is captured and the stimulus frame, when it
is presented on the screen. Afterwards, mapping takes
the timestamp of the gaze signal and matches the
timestamp of the corresponding stimulus frame. The
resulting video has the speed of the gaze signal (575
Hz). For example, if the stimulus video has 30 Hz,
each stimulus frame timestamp corresponds to about
19 gaze timestamps. The resulting video contains about
19 times the same stimulus frame but with a different
gaze signal mapped on it. The raw gaze data with the
timestamps and the stimulus with the mapped gaze on
it are placed inside the user folder.

https://www.intersil.com/content/dam/Intersil/documents/an17/an1737.pdf
https://www.intersil.com/content/dam/Intersil/documents/an17/an1737.pdf
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Fig. 1 We use a self-built aluminium stand to keep the eye tracker close to the screen and the angle of the tracker adjustable. The IR illuminators
are placed inside 3D printed black boxes in the center under the camera and at both horizontal ends. The distance between camera and left and
right side LEDs is 25 cm. The distance from the bottom LEDs to the camera is 8 cm

In general, our system consists of two main threads. One
handles image capturing and feature detection from both
eyes and the second thread handles the display of the stimulus
and the timed saving of the detected features according to the
stimulus. The main components of the first thread are: (1)
image capturing, (2) glint detection, and (3) pupil detection.
The second thread shows the stimulus and grabs the
saved features from the first thread. Either the calibration,
the evaluation, live gaze overlay, or the video playback
procedure run in the second thread. These procedures only
differ in the usage of the captured data. During calibration,
the detected values are used to estimate the visual and
optical axis of the users eyes, and during gaze estimation
and video playback, the values are used to estimate the gaze
based on the calibration model. In all procedures, the values
are saved inside the user folder (Fig. 3).

Image capture

The uEye camera software from the IDS-Imaging company
provides a SDK to set camera parameters. For example,
the manual settings in our system are: 575 FPS, 1.6 ms
exposure time, and image brightness. The camera gain
value is another important parameter, as a high gain value
would lead to a very noisy image. With higher frame rates,
the exposure time gets shorter and therefore less light is
reaching the sensor. For detection, the image must be bright
enough to distinguish the different features. As an exposure
time of 1.6 ms with the default gain value did not provide

enough brightness for a robust feature detection, the gain
value of the sensor needs to be adjusted too. A higher gain
value leads to a brighter image, but also increases the noise
in the image, which can disturb the detection of edges (e.g.,
glint contours). Setting these values is a trade-off between
brightness and noisiness. Thus, these values (gamma 220,
gain 3) are adjusted to get an image that is bright enough to
distinguish the features but low-noise enough to not disturb
edges. Next, the frame capture is started and sends the
data to our software. When a frame is processed within the
camera memory, the captured data are saved in the working
memory (RAM) of the PC where they are accessible for the
second thread.

Glint detection

When the camera frame is ready, the image is convolved by
a Gaussian kernel for denoising. On the denoised image, a
2D-Laplacian filter (Laplacian of Gaussians) is applied to
improve the pixel intensity. The size of the kernel for both
filters highly depends on the size of the bright points that
should be detected and is a trade-off between speed and
quality of results. We choose the smallest possible kernel
size to achieve the fastest detection. In conjunction with
optimizing the brightness of the IR emitters by controlling
their voltage and the angle of the IR emitters we can use
a 3 × 3 kernel to detect the glints in the images. As the
feature improvement also strengthens other less bright white
blobs, the image is thresholded. The thresholding value can
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Fig. 2 The user interface offers several functions. Next to the main features like calibration, accuracy evaluation, live gaze and video-based gaze
capture, the interface shows important timings for glint and pupil detection

be adjusted in the interface if needed. We found that the
differences in brightness between glints and other bright
points is big enough to use a fixed thresholding value of
176 on images with brightness normalized to a range of 0
to 255. The thresholding removes less bright white blobs
that can disturb the detection of the contours of the brightest
blobs—assumed to be the correct glints—or lead to false
detections in the next step. After the contour detection
on the thresholded image, the centers of the minimum
area rectangles of the found contours are passed as glint

candidates to the next step. For each glint candidate, the
brightness and distance to the surrounding pixels is checked.
These values depend on the size of the glints and on
the distance between the glints. We ignore reflections—
assumed they lie on the sclera—when the mean brightness
of the surrounding pixels is above a certain limit. In our
system, we designed the locations of the IR emitters that the
glints often appear at the border of the iris when a user is
at a 60–70-cm distance from the camera. A glint candidate
whose surrounding mean brightness is too high is treated
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Fig. 3 On the left side image a) shows three reflections with only one possible geometry. On the right side image b) shows multiple reflections.
Only one combination for the searched geometry is entirely positioned on the iris, so we can ignore the remaining as their surrounding brightness
is higher

as a reflection of another environmental light source. One
problem here is to choose the correct value for the threshold.
Low limit values eliminate glints that are on the border
between iris and sclera, whereas high limit values create
large number of false glints on the sclera area.

In addition to the above procedure, we check the
geometric relations of the glints that fit to the LEDs. We
know the physical distances between the LEDs: Where two
are on the same horizontal axis and one is in the center
of them shifted downwards. Thus, we can search for a
similar geometry inside the eye image. For example, when
two glints lie on the same horizontal axis, ± 4 pixels
buffer vertically, we assume, these are two of the three
glints we are searching for. We know that the third glint
must lie horizontally in the center of these two (or slightly
shifted to one side, depending on the corneal curvature) and
is vertically shifted downwards. The buffer and distances
between the glints in pixels are empirically defined and fit
to the possible sizes of the glints in the whole range where
the camera is in focus.

In the case where more than one glint combination is
found that fits to our geometry, the combination with the
lowest surrounding mean brightness is taken. Due to our
LED design, one of the combinations must lie entirely on
the pupil or iris. In all other combinations at least one glint
must lie on the sclera or on the border to the iris and was
not ignored in the steps before. Combinations with such
glint have therefore a higher surrounding mean brightness.
Figure 3 shows two cases. Image a) shows three reflections
that are entirely positioned either on the pupil or on the iris.

Their background is dark. We detect these three reflections
as our glints as they fit to the geometry of the LEDs.

In Fig. 3 image b) there are more than three reflections
and therefore more than one possible combination for the
geometry that fits to the LED geometry. As only one
combination is positioned entirely on dark background (iris)
we can ignore other combinations, because our algorithm
detects that the remaining combinations have at least one
reflection on the brighter background of the sclera or near
the border to it. The surrounding brightness is much higher
than for the combination lying on the iris. Once we have
a glint combination for each eye, we define a region of
interest around each eye and pass a much smaller image
(100x100 pixel) to the pupil detection algorithm. These
glint combinations are calculated for each incoming frame.
Figure 4 shows a summary of the glint detection algorithm.
Figure 5 shows a sample image with the detected glints
and pupil center. An image of 100x100 pixel compared to
the full image size is a good ratio, because the eye is fully
covered for the full range of where the camera stays in focus.
This image size seems to be typical for other eye trackers
such as The Eye Tribe in which the eye image is 100 × 90
pixel based on our tests.

Pupil detection

The pupil detection algorithm is an implementation of
the BORE algorithm from Fuhl, Santini, and Kasneci
(2017), which is based on the oriented edge optimization
formulation from Fuhl et al. (2017). Oriented edge
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Fig. 4 Summary of the glint detection algorithm showing the single
steps

optimization gives a rating for each pixel based on its
surrounding edges. In Fuhl et al. (2017), polynomials are
used as the pattern of the edges. Each edge with the
corresponding orientation to the current image position
and the gradient pattern (correct edge), corresponds to a
positive evaluation. In contrast, wrongly oriented edges do
not count into the evaluation. BORE (Fuhl et al., 2017) is the
reformulation of the optimization to circles and ellipses. In
the case of circles, different radii (r) are considered for each
image position. The current image position corresponds to
the center of the circle (p). To scan the oriented edges along
a circle, different angles (a) with a fixed increment are
considered.

argmaxp

∫ rmax

r=rmin

∫ 2π

a=0
L(ΔC(p, r, a)) dr da, (1)

Equation 1 describes the approach formally. rmin and
rmax are the circle radii. ΔC() is the oriented edge weight
and is either ignored or added to the current evaluation via
the evaluation function (L, Eq. 2).

L =
{

inner < outer 1
else 0

(2)

Fig. 5 Sample eye images (with eye looking in different directions)
cropped to 100 × 100 pixel. The green cross shows the detected pupil
center. The green dot marks the first detected glint and the red dots the
other two of the glint combination

In Eq. 2, the inner pixel value is compared with the outer
pixel value. After each image position has been evaluated,
the maximum is selected as the pupil center. This position
corresponds to one pixel in the image which is too inaccurate
for low resolution images of the eye, which typically occur
in remote eye tracking. To overcome this restriction, the
authors Fuhl et al. (2017) provided an extended version
with an ellipse fit. The ellipse fit selects the oriented
edges which are positively evaluated for this center and
calculates an ellipse over these points. As this procedure
is computationally very expensive, the authors Fuhl et al.
(2017) presented an unsupervised boosting approach for
automated person specific training of the algorithm.

To train the algorithm, BORE is given video sequences
captured during calibration (without any annotation).
After calibration, BORE calculates the pupil centers for
all oriented gradients occurring in the training images.
Afterwards, all gradients are evaluated by their contribution
to the detections. Unimportant gradients are removed from
the algorithm sequence based on predefined run-time
restrictions. This means that BORE can be adjusted to be
faster or more accurate. The algorithm can be used for frame
rates up to 1000. Further details regarding the algorithm, can
be found in Fuhl et al. (2017).

Gaze estimation

During calibration, the user is presented different screens
containing calibration targets. First, the full nine-point
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calibration grid is displayed for 1 s. It is followed by a blank
white screen and the calibration targets one after another
(from top left to bottom right). Presentation time per target is
1500 ms.We discard the first and last 500 ms per target. This
is done because we consider the first 500 ms as necessary
to maintain a stable fixation on the target. Furthermore,
we observed that the users’ focus typically decreases after
1000 ms, to explore the space around the calibration point.
In order to avoid outliers and decreasing precision in the
calibration, we decided to discard that data. We determined
these times based on our observation of the data during
development of the system.

During the central 500 ms, we capture the position of
the calibration target, the detected eye features (shown in
Fig. 5), as well as cropped image regions of the eye. The
image data produce considerable amount of data that need
to be held in memory. Thus, we implemented a temporary
buffer to reserve the required memory before recording.
However, it needs to be copied to a global queue that is
accessible to different threads after each calibration target.
This copy and reset of the temporary buffer happens during
the last 500 ms of stimulus presentation.

In the next step, we use the cropped eye images to
fine-tune the pupil-detection algorithm. The pupil detection
learns which pupil sizes are likely to occur during recording.
This training optimizes the processing speed later. The pupil
center and glint locations for each calibration point are then
detected and passed on to fitting of a 3D eye model. All
calibration targets, the location of the detected features, and
the percentage of images when the tracker could not detect
the necessary features are reported to a file.

For gaze estimation, converting image feature locations
into a 3D gaze ray, we use the 3D eye model described by
Guestrin and Eizenman (2006). Guestrin specifies models
for any number of light sources and cameras. We employ
the version with three light sources and one camera as a
good trade-off between accuracy and cost-efficiency. This
way, we do not require to synchronize multiple high-speed
cameras. One disadvantage of this configuration of the
model is that, with one camera, the model is not very robust
to head movements and the optimization needs considerable
computation time.

The fitting process is split into three parts: At first,
the optical axis of the eye is reconstructed. Accurate
measurement of the physical distances between camera,
LEDs, and screen are required for this, as all coordinates
need to be transformed to a common world coordinate
system. The cornea center is then calculated as an
intersection of planes spanned by the camera location, the
light source location, and the location of the reflection at
the cornea surface. This problem can be solved, assuming a
spherical cornea and utilizing the unprojection of the glint
image feature on the camera sensor towards 3D. Afterwards,
the pupil location can be determined in a similar way and
the optical axis is described as the vector between cornea
center and pupil center.

In the second part, the deviation between optical and
visual axis needs to be determined (illustrated in Fig. 6).
This deviation differs between humans and a calibration is
needed to estimate the offset. The visual axis is defined
by the nodal point of the eye and the center of the
fovea (region of highest acuity on the retina). Typically,

Fig. 6 Illustration of the 3D eye model. The optical axis of the eye is defined by two points, the pupil center and center of corneal curvature/nodal
point of the eye. The visual axis by the fovea and the center of corneal curvature/nodal point of the eye. During calibration, these axes need to be
reconstructed in order to estimate the gaze
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this offset is about 1.5◦ below, and between 4 and 5◦
temporally to the intersection point of the optical axis on
the retina. The whole model is described as an optimization
problem where, depending on the camera and light setup, a
differential system needs to be solved for up to 13 unknown
variables simultaneously. The amount of unknown variables
and therefore the model complexity shrinks with more light
sources and especially more cameras. As soon as the visual
axis is reconstructed, the model can be used to estimate the
gaze (third part).

After the calibration is calculated, we re-run the calibra-
tion calculations to remove possible outliers. Therefore, we
apply a filter that removes all measurements that exceed
the Euclidean distance to their respective calibration tar-
get by more than the average half plus/minus the standard
deviation.

Signal quality

As humans are usually moving slightly without a chin rest
and the resolution of the camera does not allow higher-
quality images, leading to a larger scene coverage by each
pixel, algorithms for detection can be noisy, as they can only
detect pixel-wise. With much more and smaller pixels, this
noise can be minimized as small light changes are spread
on smaller areas. This is problematic when finding contours
in an image. As light changes on pixels at the border of
a contour can lead to a fluctuating contour. Another way
is to filter the signal. We filter the pupil center signal
by applying a moving-average filter over 20 consecutive

samples (windows size: 20 samples). We apply this filter to
take the positions of all 20 samples of the current window
into account to correct the position of the current sample.
This way, we can remove noise in the signal. This filter does
not remove any sample, but rather optimizes the position
of the current sample by smoothing it with the positions of
the previous samples. When the algorithm receives a new
pupil center signal, we test if the new signal is in the range
of one standard deviation of the current window. If so, the
window moves one sample further by removing the oldest
sample. We add the new value (PCM) and calculate the
mean value of the current window by solving Eq. 3 and use
that as the new pupil center signal (PCNew). If the new
signal is outside of the range of one standard deviation of
the window, we assume a movement of the pupil signal was
not noise, but rather a real movement and take the new value
as a new sample (empty values PC0, · · · , PCM ).

PCNew = 1

n

n−1∑
i=0

PCM−i (3)

As the pupil signal can change rapidly and a filtering of the
signal must be fast and should not falsify saccade detections
in later steps, we chose this moving-average filter for the
pupil center signal. For the glints we use a Kalman filter
(Bishop, Welch, & et al. 2001) to minimize the noise. The
Kalman filter can be problematic for the pupil signal, as
pupil movements can be very fast and create far jumps in
the image. A Kalman filter would smooth these jumps out

Fig. 7 We used a nine-point calibration pattern for calibration as well as for estimation and showed the pattern in full screen. In both procedures,
we showed each point sequentially
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Fig. 8 We used a aluminium profile stand so the eye tracker was positioned close to the screen. We placed it at a distance of 70 cm to the user to
provide a common viewing position for the participants

and create a delay, which is not acceptable as saccades can
not be detected correctly anymore. As the glints do not
move very far on the cornea, the Kalman filter is optimal
for stabilizing the position of the glints. We use this filter as
slight movements of the participant already introduce noise
in the glint signal. Due to the small resolution of the camera
image, one pixel covers a larger area and slight movements
can lead to flickering of the pixels at the boundaries of
the glints. In our tests, the Kalman filter reduced this noise
much better than a moving-average filter. We configured the
Kalman filter with noise variances of smaller than one pixel
in horizontal and vertical axis.

Method

We conducted a study to evaluate the accuracy and precision
of the eye tracker. Our intention here was to focus on
pupil and glint detection accuracy. We report accuracy
and precision based on new unseen data, as reporting the
calculated values from the calibration would only show how
well the model fits.

For calibration and estimation, the same nine-point
calibration pattern (Fig. 7) was shown to the user. The
calibration points were 1 degree in size and distanced 12
degrees on the horizontal axis and 7 degrees on the vertical
axis. To measure the system performance, we measured
pixel location variations (standard deviation) for the glint
and pupil center. Moreover, the gaze accuracy was defined
as the average distance between the real target position and

the estimated gaze position. The precision was defined as
standard deviation of the estimated gaze position samples.

Apparatus

Figure 8 shows the experimental setup of our hardware and
Fig. 5 shows a sample frame of eyes being tracked by our
software. In this step, participants where asked to sit in front
of the screen with a distance of about 70 cm. The resolution
of the screen was 1920 × 1200 with dimensions of 52 × 33
cm. As we wanted to have as few restrictions as possible,
we did not use a chin rest (allowing small head movements).
We choose a standard distance of 70 cm (Holmqvist et al.,
2011). The connection between camera and PC over USB
3 was stable with no failed transfers, a frame delay time of
0.7 ms and a bandwidth usage of about 220 MB/s (max.
interface bandwidth is 420 MB/s).

Participants and procedure

Nineteen participants (18 male and one female) with
average age of 29 years (SD = 9.4) were recruited for
the study. All participants were students of the computer
science department or part of the staff and could work
on computer without glasses.2 Participants had various

2We tested our system with glasses, but as glints extremely grow
on glasses—cover big parts of the eye—we could not detect the
glints/pupil points reliably. Further investigation is needed in future
work.
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ethnicity namely, Caucasian coming from Europe or North
America, Middle-East Asian (Arabic), and Far-East Asian.
All participants had either black, brown, brown-green, gray-
blue, or blue eyes.

After signing a consent form, participants were asked
to watch the nine-point calibration pattern two times with
a maximum 30-s break between for calculating the eye
model. We used the first set of the data for the calibration
and second set for the accuracy and precision report. This
way, we avoid testing on the optimized data set from the
calibration values, which is often reported from commercial
eye trackers (e.g., Tobii Studio software). This value is
often low, because the same data used for calibration are
optimized and used again for testing.

Results

The current system uses 40 % of all CPUs during training
and 13 %while capturing and only 1.0% of RAM.When the
system is running only for calibration and gaze estimation,
the working memory was less than 170 megabytes. The
usage of the working memory during video playback highly
depends on the size and length of the video.

Runtimemeasurements

Table 2 shows that the system on average can compute 723
frames per second. As processing of one frame takes 1.38
ms on average. In extreme cases, when the eye features are
hard to detect, the system can still handle 668 frames per
second. The frames where our algorithms did not detect eye
features—when certain interim variables are not filled with
proper data—were skipped (labeled as undetected eye). The
glint detection for example will skip the frame if the contour
list is empty.

We also report the number of times our algorithms were
not able to detect glints or pupils. Over all participants the
right eye was detected in 100% of the frames and the left
eye in 99.35%.

Table 2 Speed measurements in milliseconds. The total time includes
time to detect glint, detect pupil center, and presenting a stimulus
(calibration point). We measured the different run times separately and
calculated the values over 8500 example random data

Algorithm Runtime Std. Dev. FPS Avg.

Glint 0.46 0.02 2169

Pupil 0.78 0.058 1277

System 1.38 0.115 723

Quality of results

Table 3 shows the precision of the glint and pupil detections
based on the standard deviation of the pixel locations.
The pupil deviates 0.68 pixel horizontally and 0.26 pixel
vertically. The glint values have deviation of 0.67 pixel
horizontally and a deviation of 0.29 pixel vertically. In both
eyes, the deviation is 0.67 pixel on horizontal and 0.27 pixel
on vertical axis. For measuring the pixel deviation, we used
4500 sample detections on different calibration points and
different participants.

Outliers in the detection of the features indicate
an uncertainty of the algorithm. The origin of these
uncertainties is, for example, the position of the glints on
the cornea. Different positions, especially when they are
near the border to the sclera, lead to variations in size and
sometimes even in shape. As the shape changes, surroun-
ding pixels can gain brightness and therefore go over the
threshold limit. Here, the center of the glint can slightly
move into the direction of the newly added bright pixel.
As the quality of detection has an high impact on the gaze
estimation, a stable and accurate detection is important for
high precision. With a higher-resolution image, the impact
of a changing pixel location can be reduced.

Accuracy and precision

For the purpose of comparison with the typical report of
accuracy and precision, we calculated the average values
over all participants for accuracy and precision with new
data. We measured the accuracy based on the Euclidean dis-
tance from the sample estimated gaze points to the original
calibration point on the screen transformed to visual angle.
For precision, we used the standard deviation (SD) as the
metric. For calculating the accuracy for a single calibration
point, we first calculated the Euclidean distances for each
of the sampled gaze points P1(x1, y1) · · · Pn(xn, yn) to the
corresponding calibration point C(xc, yc) shown in Eq. 4.
As we report our accuracy in visual angle, we transformed
the Euclidean distances to visual angle by solving Eq. 5. To

Table 3 The deviation of the detections in pixel for vertical axis is less
then half of the deviation in horizontal axis. For both pupil and for glint
the deviation is smaller than 1 pixel

Feature Horizontal (pixel) Vertical (pixel)

Pupil 0.68 0.26

Glints 0.67 0.29

Total 0.67 0.27
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transform the results of Eq. 5 from radians to degree we used
Eq. 6. For calculating the accuracy, we took the average of
all distances in visual angle of the sampled gaze points to
the calibration point by solving Eq. 7.

dist (C, P ) =
√

(xP − xC)2 + (yP − yC)2 (4)

Vrad(C, P ) = 2 · atan

(
dist (C, P )

2 · d

)
(5)

Vdeg(C, P ) =
(

Vrad(C, P )

2 · π

)
· 360 (6)

AccuracyC = 1

n
·

n∑
i=1

(Vdeg(C, Pi)) (7)

PrecisionC(SD) =
√√√√1

n
·

n∑
i=1

(Pi − P̄ )2 (8)

We calculated the standard deviation of all sample points
n for one calibration point C by solving Eqs. 4, 5, 6 and 8
with P = Pi(xi, yi) and P̄ = Pi+1(xi+1, yi+1).

The accuracy of the gaze estimation with the same
data we captured during calibration is typically about 0.5
degrees. Although, eye-tracking companies tend to use the
optimized gaze data from calibration (e.g., Tobii studio
software) and the corresponding accuracy values to report
their tracker performance, we reduce the effect of optimal
fitted data by not using them for accuracy and precision
reports. Rather, we tested the calibration model on new
unseen data. We show the gaze estimation errors in Table 4
in degree of visual angle. On average, over all points and
all participants, the system has an accuracy of 0.98 degrees.
The precision (standard deviation) is 0.38 degrees. The best
accuracy for a single participant was at 0.5 degrees. The
worst accuracy for a single participant was 1.4 degrees. The
best precision (standard deviation) we achieved was at 0.26
degrees. Worst precision peaked at 0.7 degrees.

Table 4 Best, average, and worst cases of accuracy and precision of
gaze estimation (in degrees) based on all participant data. The average
is based on the Euclidean distance to the target points. We calculated
the precision as standard deviation (SD)

Metric Best Avg. Worst

Accuracy 0.51 0.98 1.4

Precision 0.26 0.38 0.70

Discussion

Our work demonstrates a real-time high-speed eye tracker
in a remote-based setup. Additionally, it detects glint, pupil
center, and later estimate gaze direction within 2 ms.
As the delay of 0.7 ms caused by the camera capturing
the image was constant, we could include that value for
our gaze synchronization. This perspective on eye-tracking
systems stands in stark contrast to the common low-cost
head-mounted eye trackers that do not need to optimize
algorithms for extreme fast detection as both resolution
and speed of cameras are low. Our focus here has been a
pupil and glint detection algorithm in a high-speed and low-
cost system. As such, we used a single camera solution.
To optimize the feature detection quality, we plan to use
higher-resolution images as well as a multiple-camera setup.
Another improvement can be achieved by adding a second
camera with the pixel shift minimized by synchronizing the
detections of both cameras using an epipolar geometrical
method.

For pupil detection, we proposed an unsupervised
boosting technique to select only the most important
positions on the circle outline for computation to achieve
an extremely fast (0.78 ms) detection. As we see from
the evolution, our glint detection performed with only 0.48
pixels detection error. Thus, we achieved significant results
in speed of less than 2 ms with only about 0.33% of data
loss. To the knowledge of the authors, this is the first time
such a high-speed real-time remote eye-tracking system
with low data loss is offered. For example, the study by
Hiroyuki (Sogo, 2013) shows that EyeLink (a commercial
eye tracker) has 6.3% (SD=1.3%) of undetected gaze data.
This value is much higher for other low-cost eye trackers
(e.g., 15.5% (SD=9.8%) for the Hiroyuki (Sogo, 2013)
tracker).

For the pupil detection, we had only 0.47 pixels error on
average. Although this value is very low, it caused errors in
the gaze estimation and seemed unavoidable. We believe our
pupil and glint detection algorithm would perform better on
higher-resolution camera images (for example, in our setup
after detecting the glints, the eye region was only 100× 100
pixels). If getting an expensive camera is not possible, we
then suggest to scale up the region around the pupil center
and recalculate it to achieve higher sub-pixel accuracy.

One limitation of our system is the gaze estimation
technique in combination with the camera setup. We assume
that (1) our gaze estimation error is affected by head
movements as we did not use a chin rest to provide
an environment with as few restrictions as possible and
(2) that the optimization process of the 3D eye-model
parameters is prone to errors as optimizing 13 unknown
variables simultaneously is a highly complex task. With
the chosen resolution, even small changes in the shape
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(contour) of the features seem to have a big impact on
the precision as a lower resolution means a larger scene
coverage for each pixel and therefore a higher sensitivity to
light changes. These limitations can be overcome by using
multiple cameras with higher resolution.

We plan to use a two camera-based 3D calibration
technique (Hansen & Ji, 2010) for our system in the
future. We also did not use an artificial eye to report the
accuracy, which is common for commercial eye trackers.
The real accuracy usually varies between 0.3 and 2 degrees
(Holmqvist et al., 2011) like the Tobii T60XL has an
accuracy of 1.27 (Morgante, Zolfaghari, & Johnson, 2012)
but there are also a lot of trackers with higher values (e.g.,
Tobii X2-30 with 2.46 degree, (Clemotte et al., 2014) or
Smart Eye Pro with 2.4 degrees (Funke et al., 2016). Based
on Hansen and Ji (2010), an accuracy of 2 degrees is typical
for remote eye trackers. Nevertheless, a 3D model-based
calibration technique with multiple cameras, like Guestrin
and Eizenman (2006), is more suitable.

Another aspect to consider is related to the stimuli and
gaze synchronization method. Stimulus synchronization is
critical in high-speed eye-tracking systems. Choosing the
right camera could be a solution to this challenge, as
often (including our system) industrial cameras allow time
stamping for external events directly into the camera. In the
future, we also plan to include this feature in our system.

The source code of the system is available under
https://github.com/hospbene/RemoteEye. The study was
not formally preregistered and the data have not been
made available on a permanent archive, but requests can
be sent via e-mail to the lead author at benedikt.hosp@uni-
tuebingen.de.
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