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Abstract— As human gaze provides information on our
cognitive states, actions, and intentions, gaze-based interaction
has the potential to enable a fluent and natural human-robot
collaboration. In this work, we focus on reliable gaze estimation
in remote eye tracking based on calibration-free methods.
Although these methods work well in controlled settings, they
fail when illumination conditions change or other objects
induce noise. We propose a novel, adaptive method based on
a probabilistic model, which reliably detects glints from stereo
images and evaluate our method using a data set that contains
different challenges with regarding to light and reflections.

I. INTRODUCTION

Eye tracking holds enormous potential for real-time recog-

nition of our behavior, actions, and intentions, and can

therefore be used to improve the interaction between robots

and humans in a much more natural way [26]. For instance,

an autonomous robot or a self-driving car should detect

whether a pedestrian is aware of the moving robot or whether

the car’s driver is observing the road ahead; or a manipulator

needs to know which object the person is looking at. In fact,

since the way we explore our environment (i.e. the selection

of fixation targets), is closely linked to higher cognitive

processes, gaze direction provides fine-grained information

about the focus of the attention [11]. Characteristic patterns

in eye movements can be used to draw conclusions about

the current activity of a subject, the degree of task difficulty,

or assess expertise [4], [20], [21]. Simultaneously, eye

contact and gaze gestures provide important clues in natural

human communication [1]. Especially in the interaction with

autonomous agents, information derived from gaze patterns

of the user could be used to adapt the behavior of these agents

more efficiently and naturally: users may use their gaze as an

advanced input device to control applications just by looking

on it or as a combination with conventional input methods

such as voice control, where the gaze preselects the affected

component in e. g. the navigation system or speedometer to

setup a new route or maximum velocity, respectively [12],

[23].

Video-based eye tracking is characterized by two ap-

proaches. Head-mounted devices are attached to the subject’s

head and record the pupil position relative to their head

position. This positioning comes with the advantage that the

cameras are located close to the eyes and with a fixed axial
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offset, which allows for accurate and highly available gaze

estimation [14]. In contrast to head-mounted devices, remote

eye-tracking systems record the subject out of a stationary

position and estimate a subject’s gaze vector in a 3D scene.

Such systems usually deal with a low resolution of the eye,

which make accurate gaze estimation more challenging [13].

Additionally, the working area is limited by the camera

perspective, which restricts the user mobility. Conversely,

remote eye tracking has the advantage of being non-invasive,

which is an imperative requirement for many real-world

applications since they are more comfortable to use and work

without additional effort for the user.

An unsolved problem in remote eye tracking is the map-

ping of the detected pupil position on the eye video to a

point of regard (POR) in the scene. A common way to

cope with this challenge for head-mounted eye tracking is

to regress a function that maps the pupil position to a POR

on a camera scene through a calibration step. Despite recent

advances to make calibration faster [25], recalibration is

needed if, for example, the device slips. Using remote eye

tracking, the estimate can be achieved through appearance-

based methods, which are still restricted to accuracies around

six degrees [34]. The only calibration-free and accurate

approaches are model-based, which usually require the de-

tection of the eyes, the eye location in the 3D space, and an

eye model where the eye center is used as the gaze vector

origin. Additionally, the pupil center must be located within

the eye region, which is used as an intersection point of

the gaze vector. Therefore, a robust eye model is a key

component for calibration-free eye tracking. Parametrizing

the eye model in a robust way remains, however, an open

challenge that directly affects the applicability of model-

based gaze estimation methods. For example, Swirski et al.

describe a method for estimating the eyeball and cornea as

two intersecting spheres based on the detected pupil con-

tour [30]. Their method, however, requires a high resolution

of the pupil in the image and a reliable contour detection

[30]. Other approaches use characteristic reflections of light

sources or objects caused by the structure of the human eye,

which are known as Purkinje images. The most pronounced

Purkinje image is caused from the surface of the cornea and

is referred to as glint. Some approaches use these Purkinje

images to determine reference points of the internal eye

structure, which are then further used to estimate the eye

pose in space. The gaze direction can be then derived without

an explicit detection of the pupil boundary, but requires a

very accurate localization of reflections, which is usually
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not feasible in the wild [5]–[7]. Such approaches are not

applicable to remote eye tracking due to low resolution and

low contrast of the eye image compared to head-mounted

eye tracking. Therefore, various approaches adapt the eye

model based on a combination of detected facial landmarks

and glints, e.g., [31], [35].

Most glint-based approaches, work well for controlled

(laboratory) settings and assume a fixed number of static

light sources. Under these constraints, it is possible to extract

glints by investigating histograms [17] or applying edge

detectors [27], [28], but they fail as soon as these laboratory

conditions are no longer present. Strong light gradients, vary-

ing lighting, and reflections, as found especially in driving

scenarios, are very likely to interfere with glint detection.

In this paper, we address the aforementioned challenges and

provide a method for robust glint detection in remote eye

tracking based on a probabilistic method. In the next section,

we first propose a robust filter to extract glint candidates from

stereo images inspired by FAST-like features and perform a

stereo matching to select the most probable glint pair for

each eye. These points can then be used in a subsequent

step to adapt an eye model. Additionally, we introduce a

new dataset for glint detections in Section III and compared

our approach with state-of-the-art glint detectors in Section

IV.

II. METHODS

Our glint detection method consists of two parts: (i) first,

glint candidates are extracted from a stereo input image by

a spatial peak detection. We call this step FAST2 since it

was inspired by the FAST feature detection. Then, (ii) after

detecting potential glint candidates, we use stereo matching

and triangulation to filter the most likely glint pair in 3D

by applying an adaptive probabilistic model. The second

filter step allows to adjust the filters in the first step less

restrictively, which on one hand leads to a larger amount

of extracted glint candidates due to reflections, other light

sources or other noise, but also considers weakly pronounced

glints. This way, we are able to detect glints even under very

challenging illumination conditions. In addition, the proba-

bilistic model provides a suitable confidence measure, which

enables us to detect the lack of a glint. Figure 1 outlines the

proposed algorithmic pipeline consisting of six successive

steps, whereby the steps 1©- 3© address the extraction of glint

candidates, whereas the steps 4©- 6© implement the stereo

matching and the probabilistic model. In the following, we

describe these steps in detail.

1© Stereo Capture: Since the proposed probabilistic

model operates on glints in a 3D coordinate system, we

use a stereo camera to retrieve depth information. Our setup

consists of two planar aligned cameras with a fixed vertical

and horizontal offset. The subject’s head should be facing to

the cameras, so as both glints are visible.

2© FAST2: We propose a novel filter to highlight glints

in an image based on the assumption that areas in the

image corresponding to glints are significantly brighter than

1 Stereo Capture 2 FAST2 3 Glint
Candidates

4 Matching5 Triangulation6 Stereo Glint
Pair
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Fig. 1: Workflow of our algorithm. The upper row shows the

extraction of glint candidate from input images ( 1©) captured

from a stereo camera. In step 2©, we apply our FAST2 feature

extraction to emphasize the glints in a response map. Finally,

the highest peaks are selected. The lower row shows the

stereo matching of the extracted glint pairs 4©, their mapping

into 3D space 5©, and the selection of the most probable glint

pair based on a probabilistic model 6©.

their closer neighborhood. We define a glint as a group

of related pixels that are at least brighter than a threshold

tfast2 compared to all surrounding pixels in a certain radius

rfast. We take the difference of the maximal intensity in the

surrounding pixels e0, . . . , en to the considered pixel cxy and

normalize them by the average intensity ĉxy around cxy as

shown in Equation (1). The resulting response kxy is then

thresholded by tfast2, which leads to the sparse response map

mxy ∈ M . The threshold tfast2 controls the sensitivity of

the glint detection (smaller tfast2 results in a more sensitive

glint detection). We regulate tfast2 in an adaptive way, by

decreasing it if less than a certain number of glints were

detected or no two corresponding glints could be selected in

the last iteration in step 6©. Accordingly, tfast2 is increased

if too many glints were found and the glint detection was

successful. The radius rfast2 controls the spatiality of the glint

detection. It should be larger than the maximal expected glint

radius, but as small as possible.

e15e0 e1
e2
e3
e4
e5

e9 e8 e7

e6

e14

e10

e13
e12
e11

rcxy

kxy =
cxy −max(e0, . . . , en)

ĉxy

mxy =

{
kxy tfast2 ≤ kxy

0 tfast2 > kxy
,

(1)

where cxy ∈ I is the raw and ĉxy ∈ Î is the average filtered

input image. kxy ∈ K contains the dense, and mxy ∈ M

the sparse response map of the feature extraction.

3© Glint Candidates: After extracting the above features

we sort the pixels by their response and consider the n

highest as glint candidates. Taking into account that glints

may spread over more than one pixel (depending on rfast2),

we suppress new glint candidates by weighting the distance

to all already found candidates exponentially based on the
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following condition:

gi =

⎧⎪⎨
⎪⎩
mi if tdist <

j=0∑
j<i

e−
‖mi−gj‖

2

2σ2 and mi ∈ R

∅ otherwise

, (2)

where gi ∈ G is the i-th glint candidate and mi ∈M the i-th

element of the sorted pixels. tdist and σ are two competing

parameters to adjust the minimal allowed distance of two

glints. We suggest to set σ =
√
0.5 · r and choose t ≤ e−1

to ensure a minimal distance of r of two glint candidates.

R is the region of interest where the head of the subject is

expected. Without further knowledge, we choose R to cover

the whole input image.

4© Matching: After extracting a set of glint candidates

gleft l ∈ Gleft and gright k ∈ Gright, in the left and right

frame, respectively, the following step matches the two sets

by their maximum likelihood Lmatch l,k, taking into account

the similarity of the patches around the glints as well as

geometric constraints derived from the camera setup. For this

purpose, we define in the following, a series of likelihood

functions that model the requirements as non-normalized

exponential distributions.

The similarity likelihood LBRIEF l,k of two glints is defined

by the distance of the BRIEF descriptor for a patch around

the glint candidate of extracted from the left respectively

right frame.

vBRIEF l,k = δ(fBRIEF(gleft l), fBRIEF(gright k)), (3)

LBRIEF l,k = e
−

v2
BRIEF l,k

2·σ2
BRIEF , (4)

where δ(fBRIEF(gleft l), fBRIEF(gright k)) is the Haussdorf dis-

tance of the two BRIEF features fBRIEF of the glints gleft l and

gright k. The scaling parameter σBRIEF defines the tolerance of

deviation in the BRIEF features.

Considering the planar alignment of the cameras and the

fixed distance between them, the angle between gleft and the

corresponding gright can be deduced. Taking into account

any imperfect distortion or alignment of the cameras, we

also describe the geometric constraints as an unnormalized

distribution to accommodate minor deviations:

vangle l,k = gright k�
xy
gleft l, (5)

Langle l,k = e
−

(C1 �
xy

C0−vangle l,k)2

2·σ2
angle , (6)

where C1 and C0 are matrices representing the intrinsic

parameters of the corresponding cameras (see Figure 2).

Langle l,k provides the likelihood scaled by σangle of the angle

between gleft l and gright k. Since Langle l,k was designed to

compensate small errors in the alignment of the cameras,

calibration, or other noise, we suggest to choose σangle ∝
RMS Error of the intrinsic and extrinsic calibration. Besides

the angle of the detected glint candidates in the stereo image,

we also limit the minimal and maximal depth of the glint

regarding the working distance of wmin up to wmax
1:

vmax = P1w
�

min − P0w
�

min, vmin = P1w
�

max − P0w
�

max, (7)

where P0 and P1 are projection matrices of the both cameras.

The vectors vmin and vmax describe the minimal and maximal

pixel distance on the projection plane of both glints gleft l and

gright k inside the working distance. As above, we define the

constraint as a likelihood function:

vdist l,k = gright k − gleft l, (8)

Ldist l,k = e
−
‖(0.5·vmin+0.5·vmax)−vdist l,k‖

2

2·σ2
dist , (9)

whereby the scaling parameter σdist should be selected in

such a way that vmin and vmax result in a likelihood above

0.5. Please note, we assume that one pixel on the sensor has

the same scale in width and height. If that does not hold,

vdist needs to be scaled properly.

The final matching likelihood Lmatch l,k of two glint can-

didates gleft l and gright k is defined as following:

Lmatch l,k = LBRIEF l,k · Langle l,k · Ldist l,k. (10)

5© Triangulation: Using triangulation, two correspond-

ing glint image points can be mapped from the respective

camera to 3D. In theory, it suffices to calculate the inter-

section of the two rays derived from the pinhole models of

both cameras to obtain the projected point in 3D. Indeed,

noise in the intrinsic and extrinsic calibration as well as

sampling lead to the fact that the derived rays probably

will not intersect. The challenge, then, is to find a 3D glint

point which describes the detected corresponding glint image

points optimal. There are several approaches to define the

optimality and how to calculate it [15], [22]. The most

common and intuitive approach that we also apply to our

problem, is to solve the linear equation system P0 · gscene =
gleft and P1 · gscene = gright for a least squares error [16].

6© Stereo Glint Pair: After triangulating the detected

glint candidates from the image points to 3D scene points,

we select the most probable pair of glints representative to

the left and right eye. Similar to step 4©, we define likelihood

functions to model the probability of a glint pair based on

geometric constraints. For that, we consider the interpupillary

distance vIPD u,v which is spanned by the two considered

glint candidates gscene u and gscene v , as well as the rotations

vyaw u,v and vroll u,v , and the distance vremote u,v relative to

the camera system as shown in Figure 3.

The mean interpupilar distance (IPD) on humans is around

63mm, with the vast majority of adults having IPDs in the

range 50mm-75mm [9]. Since IPD and the distance of

the glints are both depending on the distance between the

eyeballs, we assume that the distance of the glints gscene u

and gscene v should be similar to the IPD:

LIPD u,v = e
−

(63mm−‖gscene u−gscene v‖)
2

2·σ2
IPD , (11)

1In our instance: wmin = (0, 0, 800), wmax = (0, 0, 1200)
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Fig. 2: After the triangulation of the matched glints in step

5©, the pairwise likelihood Lpair of the 3D glint candidates

is calculated according to Eq. (16) using the metrics vyaw

(vertical head rotation), vroll (lateral head inclination), vIPD

(pupil distance) and vremote (distance to the camera system).

where LIPD u,v is the likelihood of the glint pair gscene u and

gscene v . We choose σIPD ≈ 11.04mm to keep LIPD u,v ≥ 0.5
for the range 50mm-75mm for the IPD.

In addition to the IPD, we also include the rotation as a

constraint for valid glint pairs. We assume that it is unlikely

to get valid glints with a vertical head rotation (yaw) of more

than a certain degree (i.e., ±30◦). Of course, we can not

rule out that there is still head poses existing with more than

±30◦ vertical rotation which produces visible glints on both

eyes in the stereo images. Therefore, we assume a decreasing

probability for such glint pairs:

vyaw u,v = gscene v�
zx
gscene u, (12)

Lyaw u,v = e
−

vyaw u,v
2

2·σ2
yaw , (13)

where Lyaw u,v is the likelihood of the glint pair gscene u

and gscene v with the vertical rotation vyaw u,v . We suggest

to choose σyaw ≈ 4.25◦ to keep Lyaw ≥ 0.5 for vertical head

rotations less than ±35◦. Simultaneously to the vertical head

rotation we constrain the lateral head inclination to ±30◦ and

define analogously Lroll u,v .

Finally, we determine the distance between the glint pair

and the camera system to ensure that only glint pairs within

the defined working range wmin - wmax are selected:

vremote u,v = 0.5 · gscene v + 0.5 · gscene u, (14)

Lremote u,v = e
−
‖0.5·wmin+0.5·wmax−vremote u,v‖

2

2·σ2
remote , (15)

where Lremote u,v represents the likelihood of the distance

of the glint pair (gscene v, gscene u) regarding the working

distance. We suggest choosing the scaling parameter σremote

in such way that a likelihood of at least 0.5 can be obtained

at the border of the working area. The overall likelihood

Lpair u,v for a certain glint pair is defined as the product of

all single metric likelihoods:

Lpair u0,u1 =Lmatch u0,u1 · Lmatch v0,v1 · LIPD ·
Lyaw u,v · Lroll u,v · Lremote u,v (16)

where Lmatch u0,u1
and Lmatch v0,v1 are the matching like-

lihood of the two 2D glint candidates of the triangulated

glint gscene u and gscene v . The glint pairs with a likelihood

higher than a certain threshold t (we usually use t = 0.5)

are reported as valid detected glints:

du,v =

{
0 if Lpair u,v < t

1 otherwise
, (17)

with 0 < t < 1. du,v indicates if the corresponding

combination of glint candidates were classified as valid (1)

or not (0).

a) Confidence measure: cu,v indicates the certainty of

a classification for a glint pair:

cu,v =

{
Lpair u,v if Lpair u,v > t

1− Lpair u,v otherwise
. (18)

Considering that the detection du,v ∈ 0, 1 of a glint pair in

the stereo image is Bernoulli distributed, and the conjugated

likelihood Lpair u,v is part of the exponential family, we can

conclude that the prior probability for the correct classifica-

tion can be modeled using a Beta distribution [8]:

P (Lpair u,v) =
Lpair u,v

α−1 · (1− Lpair u,v)
β−1

B(α, β)
, (19)

where α and β control the expected correct and incorrect

prediction rate, respectively. Given prior knowledge of the

accuracy of the algorithm for a specific setup, it can be

integrated into an advanced confidence measure ĉu,v:

ĉu,v =

{
P (Lpair u,v < t) if Lpair u,v > t

P (Lpair u,v > t) otherwise
. (20)

b) Adaptive parameters: The behavior of the presented

classifier is strongly related to the choice of the parameters

of each single likelihood function. In the following, we will

adapt these parameters in an online fashion in order to adapt

the classifier to the subject and compensate for possible cal-

ibration inaccuracies. Since the likelihood functions consid-

ered here are proportional to a normal distribution (without

the constant normalization), we can transform the parameters

of the likelihood function in exponential distributions and

use Bayesian inference to update them after each iteration.

Therefore, we redefine the likelihood Lpair u,v as the marginal

likelihood:

Lpair u,v = P (Xi|ηi−1) =

∫
θ

P (Xi|θ) · P (θ|ηi−1)dθ, (21)

where Xi is the considered set of glint candidates

{gleft u0
, gright u1

, gleft v0
, gright v1} extracted in iteration i.

P (Xi|θ) is the product of the likelihoods as previously stated

in eq. (16) using the parameters θ. ηi−1 is the set of the

hyperparameters of the parameter distributions gain from the
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last iteration. The Bayes’ theorem allows us to update the

parameter distribution by the observed data as follows [19]:

P (θ|ηi) ∝ P (Xi|θ) · P (θ|ηi−1) = P (θ|η0) ·
i∏

j=1

P (Xj |θ),
(22)

where P (θ|η0) is the probability of the parameters θ given

the initial hyperparameters η0, and P (Xj |θ) is the probability

of the glint pair Xj given the parameters θ. This requires that

the complete data series X0 . . .Xi seen up to now must be

stored. Since this is not practicable for large data series, we

estimate the hyperparameter after each iteration anew:

P (θ|ηi) = P (θ|ηi−1 + δηi), (23)

where δηi is the set of gradients between the hyperparameters

ηi and ηi−1. All the likelihood functions Lmatch . . .Lpair can

be converted to the form:

L = P (Xi|{μ, σ2} ∈ θ) = e−
(μ−Xi)

2

2·σ2 , (24)

which corresponds to a non-standardized normal distribution.

The likehood of the parameters μ and σ are described

by the distributions based on the hyperparameters η. We

approximate the gradients δη very roughly by the distance

of the observed data and estimated mean:

δη̂μ mean i ≈ ημ mean i−1 −Xi,

δη̂μ variance i ≈ δη̂μ mean i
2,

δη̂σ mean i ≈ ησ mean i−1 − (ημ mean i−1 −Xi)
2,

δη̂σ variance i ≈ δη̂2σ mean i, (25)

and normalize them by a weight function h (e.g., tanh) and

the marginal likelihood:

δηi = h(δη̂i) · P (Xi|ηi−1). (26)

Finally, we estimate ηi using Stochastic Gradient Descent

(SGD) to minimize δη̂ [3]. This way, the parameters of the

model are continuously fitted to the observed glints, which

works fine for parameters modeling physical circumstances,

such as the IPD. However, we need to be careful when

adapting parameters that model temporal circumstances, such

as the distance of glints to the camera system. Otherwise, it

may happen that after sometime of recording and adaption,

the model is overfitted and not able to detect the glints

anymore (e.g., if the subject moves around). Therefore, we

limited the hyperparameters representing the variance to a

lower bound. In addition, we generalize our model when the

confidence level falls below a critical value tĉ, so that it is

possible to adapt to larger changes after a few iterations:

δηi =

{
h(δη̂i) · P (Xi|ηi−1) if ĉ > tĉ

h(η0 − ηi−1) otherwise
. (27)

The number of extracted glint candidates per frame and

the resulting number of possible combinations of glints has

a considerable impact on the runtime. Therefore, we adapt

the threshold tfast2 with the gradient δη̂fast2 as the difference

between the number of detected glints and the number of

Functio
n

Parameter

Hyper-

parameter η

Initia
l η

0

Descrip
tio

n

Mleft ηtfast2 left 0
Mright ηtfast2 right 0

Threshold for FAST2
response on the left and
right input image (1).

Gleft Rleft ηRx left
Iwidth left

2

ηRy left
Iheight left

2
ηRw left Iwidth left

ηRh left Iheight left

Gright Rleft ηRx right
Iwidth right

2

ηRy right
Iheight right

2
ηRw right Iwidth right

ηRh right Iheight right

Region of interest in
which valid glint
candidates are expected
(2).

LBRIEF μBRIEF ημ mean BRIEF 0
ημ variance BRIEF 1

σBRIEF ησ mean BRIEF 1
ησ variance BRIEF 1

BRIEF similarity
likelihood of a glint
candidate from the left and
the right stereo image (4).

Langle μangle ημ mean angle C1�C0

ημ variance angle 1 (◦)2

σangle ησ mean angle ∝ RMS Error

ησ variance angle 1 (◦)2

Likelihood of the angle
between two matched 2D
glint candidates (6).

Ldist μdist ημ mean dist
vmax+vmin

2
ημ variance angle 1px2

σdist ησ mean dist
‖vmax−vmin‖

2

log(256)

ησ variance dist 1px2

Likelihood of the distance
between two matched 2D
glint candidates (9).

LIPD μIPD ημ mean IPD 63mm
ημ variance IPD 1mm2

σIPD ησ mean IPD 11.04mm
ησ variance IPD 1mm2

Likelihood of the distance
between a 3D glint pair
(11).

Lyaw μyaw ημ mean yaw 0◦

ημ variance yaw 1 (◦)2

σyaw ησ mean yaw 4.25◦

ησ variance yaw 1 (◦)2

Likelihood of the vertical
rotation of a 3D glint pair
(13).

Lroll μroll ημ mean roll 0◦

ημ variance roll 1 (◦)2

σroll ησ mean roll 4.25◦

ησ variance roll 1 (◦)2

Likelihood of the lateral
inclination of a 3D glint
pair (13).

Lremote μremote ημ mean remote 1000mm
ημ variance remote 1mm2

σremote ησ mean remote 167.86mm
ησ variance remote 1mm2

Likelihood of the distance
from the 3D glint pair to
the camera system (15).

TABLE I: Overview of all adapted parameters η and the

suggested initial value η0.

expected glints. In addition, we adapt the region of interest

(ROI, defined by a center point and the width and height of

a rectangle: R = (x, y, w, h)) to reduce the search area for

glint candidates. The gradient of the ROI (δη̂ROI) is calculated

as the difference between the ROI from the last iteration and

a ROI defined around the detected glint with a fixed padding.

Table I provides an overview of all optimized hyperpa-

rameters η and a recommendation for the initial state η0.

c) Implementation: The process presented here has

been integrated into Caffe [18]. We added some layers to

the Caffe framework to implement the steps 2©- 6©. While

in the forward propagation, we extract the glint candidates

and calculate their likelihoods. Then, we use the back prop-

agation to calculate the gradient δη and then optimize the

hyperparameters η with the SGD solver. In addition to the

layers for implementing the steps 2©- 6©, we also created
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layers for the confidence (also used as loss), evaluation,

debugging, and writing journal files.

d) Combination with existing approaches: The sepera-

tion of the individual steps into different Caffe layers allows

them to be easily replaced by other approaches. In addition

to the feature extraction outlined in step 2© for highlighting

glint candidates, we also provide various methods which

we have found in the literature. We modified some of the

methods slightly in order to optimize their behaviour by

adapting their parameters in the back propagation.

(Adaptive) Threshold: The majority of existing approaches

require suitable lighting conditions and can therefore

extract the glint positions based on fixed thresholds [29],

[33], [36]. In other approaches, adaptive thresholds can

be found, which take into account the average intensity

in the surrounding area and are, therefore, more robust

to varying illumination levels [32]. We implemented the

adaptive threshold as following:

mxy =

{
cxy if cxy − ĉxy > tadaptive threshold

0 otherwise
, (28)

where cx,y ∈ I is the intensity, and ĉx,y ∈ Î is the

mean intensity of the input image at position (x, y). The

threshold tadaptive threshold ∈ η is the minimum difference

that must result in the intensity with respect to the mean

intensity to not be suppressed. For ĉxy = 0 this equals

the use of a fixed threshold.

Ebisawa: Ebisawa et. al. use first an adaptive threshold as

in the above Equation (28) to extract temporary glint

positions. The position of the glints is determined then

more precisely by calculating a gravitational center of

the glint candidates within a certain window [10].

Canny, LoG, Sobel: Sharma et. al. evaluated the Laplacian

of Gaussian (LoG), Sobel and Canny edge detector with

regard to their applicability to glint detection [27]:

mxy =

{
cxy if edgexy(I, tedge sensitivty)

0 otherwise
, (29)

where cx,y ∈ I is the intensity of the input image.

tedge sensitivty ∈ η is the threshold of the magnitude, in

order to be counted as an edge (for Canny it is the

upper Threshold of the hysteresis).

In order to weight glints which are located in a relatively

poorly illuminated region more strongly, we extended all

the extractors by a spatial normalization of the output. This

process increases the detection rate of weakly pronounced

glints significantly, but also increases the noise.

III. DATASET

We collected a dataset consisting of 6993 labeled IR stereo

images (1152 × 1536 pixel at 10Hz). The images were

recorded by two planar arranged cameras with a vertical

and horizontal offset to each other of 150mm and 20mm.

Overall, the dataset provides 7 sequences (DS01, . . . , DS07),

where each sequence consists of 999 stereo frames (99.9 s)

DS
01
DS
02
DS
03
DS
04
DS
05
DS
06
DS
07

999 Frames / DS

983 | 13 | 3 

721 | 198 | 80

758 | 190 | 51

954 | 12 | 33

770 | 148 | 81

799 | 80 | 120

694 | 194 | 111

All glints 
visible

Some glints 
visible

No glints 
visible

Strong 
sunshine

Re ective 
distractor 
available

Subject 
wears 
sunglasses

Varying 
lighting

Glints Challenges

Fig. 3: Challenges addressed by our dataset

collected from four different subjects. All sequences, except

for DS0, contain at least one of four different types of

lighting interference, which makes glint detection on these

images very challenging. Figure 4 and 3 provide an example

of each challenge and an overview on which of those are

present in the respective sequences.

The sequence DS01 is considered the most easiest one

since it presents a favorable setting for glint detection. In

contrast, the sequences DS02, DS04, and DS05 contain

strong illumination gradients due to sunshine, which addi-

tionally causes reflections on hair, jewelry, buttons, and other

reflecting parts in the scene. In DS02, DS03, and DS05

additional reflecting objects were placed in the scene, which

would cause additional disturbances and possibly even cover

the actual glints. In the sequences DS06 and DS07, the

subjects wear sunglasses. This causes additional reflection

around the eye, which sometimes overlay the original glint.

DS05 provides the most challenging lighting conditions since

a strong infrared illumination source was moving around the

subject.

The intrinsic parameters were estimated using Matlab’s

camera calibration toolbox and a 10 × 8 checkerboard.

We labeled all visible glints in the stereo images and

triangulated those, thus we obtained the glint position in

2D image coordinates as well as in a 3D stereo camera

coordinates. We will provide the dataset with the labels

and calibration for download under: ftp://peg-public:peg-

public@messor.informatik.uni-tuebingen.de/glintdb.zip.

IV. EVALUATION

We evaluated our glint detection approach on the hand-

labeled data set introduced above. More specifically, we
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Good illu-
mination

Strong
sunshine

Distrac-
tors

Illumi-
nation

Sun-
glasses

Fig. 4: Our dataset comes with various challenges. The first

frame shows an example of favorable conditions for glint de-

tection. The next image contains a huge light gradient caused

by lateral sun radiation. Thereby, the intensity of the right

glint is suppressed. In the third frame, an additional distractor

in front of the right eye causes additional reflections next to

the glint. The 4th example shows the impact of a further

varying IR light source. In the last frame the subject wears

sunglasses. IR is not blocked by the glasses so the glints are

well visible, but causes additional reflexions close to the eye.

OpenFace FAST2 Haar Cascade

Accuracy F1 score Accuracy F1 score Accuracy F1 score

DS01 0.862 0.926 0.989 0.995 0.446 0.617
DS02 0.642 0.782 0.609 0.757 0.050 0.094
DS03 0.586 0.739 0.834 0.910 0.499 0.666
DS04 0.987 0.994 0.887 0.940 0.026 0.051
DS05 0.697 0.822 0.809 0.894 0.086 0.158
DS06 0.946 0.972 0.901 0.948 0.064 0.120
DS07 0.724 0.840 0.716 0.835 0.019 0.037

AVG 0.777 0.869 0.821 0.897 0.170 0.256
All 0.790 0.883 0.833 0.909 0.177 0.301

Accuracy F1 score

TABLE II: Evaluation results of our approach used as an

eye detector compared to the two state of the art methods

OpenFace and Haar Cascade.

compared the performance of various glint extractors from

the state-of-the-art with our proposed FAST2 method (Figure

5). To the best of our knowledge, there are no comparable

methods for selecting glint candidates in stereo images.

Therefore, we compared our approach with two state-of-the-

art methods for the detection of faces and eyes (Table II).

a) Glint Extractors: Figure 5 shows the evaluation of

our glint detection using different methods from the state-of-

the-art (Adaptive Threshold, Canny, Ebisawa, LoG Sobel)

and our proposed FAST2 for feature extraction. With the

exception of the Canny Edge Detector, all methods achieve

predominantly good results. Our proposed extractor FAST2

is characterized by an overall very low false positive rate,

which can be traced back to the implicit limitation of the

size of possible glints (r). The dataset DS01 was detected

almost without errors. The challenging illumination condi-

tions present in the dataset DS02, DS04 and DS05 does not

seem to interfere with the performance of our algorithm. For

DS07, the sunglasses worn by the subject induces additional

reflections along the frame and on the lenses. As a result, a

large number of glint candidates were detected around the

eye, thus the actual glint was suppressed due to the distance

condition to the previously selected glints in step 3©, which

is finally reflected in a higher false positive rate.

Cumulative
Error ROC Confusion

Adaptive Thresh
Canny
Ebisawa
FAST2

LoG
Sobel

TP FPError [mm] TPR / FPR

 Ground Truth

 Sobel
 LoG
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 Adaptive Threshold
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 Ground Truth
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Fig. 5: Evaluation results for the different feature extractors

used in FAST2. For glint selection, we used an adaptation

rate of 0.15 and a back propagation after each forward step.

The first column shows the detection rate on the vertical axis

relative to a maximum permissible error in the horizontal

axis. The second column contains the Receiver Operating

Characteristic (ROC). The last column lists the relative

proportion of correctly and incorrectly classified glints for

t = 0.5.

b) Eye Detection: Table II shows results of a com-

parison between our method based on the FAST2 feature

extraction and OpenFace [2] (for facial recognition) and a

cross validated Haar Cascade. We applied OpenFace and

the Haar Cascade separately on both stereo images and

determined the center of the eye. Next, we triangulated these

points and compared to the labeled points from our dataset.

Since the labeled glint points do not necessarily coincide

with the center of the eye, we allowed an error up to 2 cm. In

addition, we removed all images from the dataset where the

eyes could be seen but no glints were present and therefore,

not labeled. Our presented method achieves a performance

similar to that of OpenFace and partly outperforms it. The

performance of OpenFace collapses, especially on the dataset

DS03 and DS05. For these datasets, the tracking in OpenFace

partially interrupts; for DS03 the head of the subject is not
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always completely visible in both stereo images, whereas for

DS05 the performance decreases due to varying illumination.

On average, we achieve an accuracy of 82.1% and 83.3%
on the whole dataset. The Haar Cascade shows very poor

performance, possibly due to the unique lighting conditions

in each dataset and the susceptibility of Haar-Like features

to inconsistent lighting [24]. In addition, the detected bound-

ing boxes are often inaccurate, thus after triangulation, the

maximum permissible error of 2 cm is exceeded. Only two

data sets, namely DS01 and DS03, which contained neither

challenging lighting nor sunglasses, were partially detected

correctly.

V. CONCLUSIONS

We presented an adaptive glint detection approach for remote

eye-tracking in the wild based on a probabilistic model. Our

evaluation on more that 10.000 hand-labeled data showed

that our algorithms significantly improves the state-of-the-

art and can cope with various challenges arising in real-

world settings, such as varying illumination conditions, or

reflections. This way, we have provided a strong basis for

the parametrization of eye models in remote eye tracking.

In future work, we will integrate facial landmarks into the

probabilistic model, which will serve as a basis for a later eye

model adaption and gaze prediction. This approach provides

robust gaze estimation in open ended settings, providing an

additional stream of information that can greatly improve a

robot’s ability to interact with people in collaborative task

settings.
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