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ABSTRACT
Much of the current expertise literature has found that domain
specific tasks evoke different eye movements. However, research
has yet to predict optimal image exploration using saccadic in-
formation and to identify and quantify differences in the search
strategies between learners, intermediates, and expert practition-
ers. By employing LSTMs for scanpath classification, we found
saccade features over time could distinguish all groups at high
accuracy. The most distinguishing features were saccade velocity
peak (72%), length (70%), and velocity average (68%). These find-
ings promote the holistic theory of expert visual exploration that
experts can quickly process the whole scene using longer and more
rapid saccade behavior initially. The potential to integrate expertise
model development from saccadic scanpath features into intelligent
tutoring systems is the ultimate inspiration for our research. Addi-
tionally, this model is not confined to visual exploration in dental
xrays, rather it can extend to other medical domains.

CCS CONCEPTS
• Applied computing → Psychology; • Computing method-
ologies → Neural networks; • Human-centered computing
→ Human computer interaction (HCI).
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1 INTRODUCTION
When we observe an expert in their element, we generally recog-
nize that they are indeed experts by attributes such as performance
and speed. But the underlying mechanics – the cognitive and pro-
cedural – that dictate success are less tangible. In an attempt to
explain experts’ superior performance in terms of cognitive ability,
features such as intuition and effortlessness are put forth [Chi 2006;
Dreyfus and Dreyfus 1986; Ericsson and Lehmann 1996; Polanyi
1962; Shanteau 1992]. The extent of an expert’s intuition is mani-
fested in their visual behavior, and many expert domains rely on
effective visual processing [Brams et al. 2019; Gegenfurtner et al.
2011; Van der Gijp et al. 2017].

Specifically in medicine, visual inspection of medical images re-
quires sensitivity to even the slightest feature aberration. Effective
visual processing of medical images is asserted by the fixation be-
havior of experts, where fixation durations are shorter for experts
compared to novices [Assaf et al. 2016; Fox and Faulkner-Jones
2017; Ganesan et al. 2018; Gegenfurtner et al. 2011; Van der Gijp
et al. 2017]. Spending less time on the task as well as more rapid
attention to relevant information (less fixations to obtain the de-
sired result) are also characteristics of experts [Brams et al. 2019;
Cooper et al. 2010; Krupinski 1996; Kundel et al. 2007; Mallett et al.
2014; Manning et al. 2006; Nodine et al. 1996; Van der Gijp et al.
2017; Warren et al. 2018]. This suggests that their experience and
knowledge provides shortcuts that are more sophisticated than
novice comprehension. For example, experts can view a radiograph
for just a few milliseconds and tell if there was an anomaly present
with extremely high accuracy [Brunyé et al. 2021; Evans et al. 2013;
Feltovich et al. 2006]. Informally, we would refer to this quick un-
derstanding of the scene content as getting the gist.

Yet, there is some reality behind the impression that experts
quickly know what is in the image and what further to look for.
The Holistic image processing theory [Kundel et al. 2007] states
that experts initially form a brief global sense of the problem by
scanning the whole image. Then, they hone in on areas that require
deeper investigation. Support for this theory in radiology has addi-
tionally found that expert search strategies employ a global-to-focal
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order [Brams et al. 2020; Ganesan et al. 2018; Kok et al. 2012; Kundel
et al. 2007; Van der Gijp et al. 2017]. This means that experts scan the
outer periphery and central areas with sweeping saccades and short
fixations and then scrutinize features with longer fixations and de-
creased saccadic amplitudes [Pannasch et al. 2008]. This behavior
has also been linked to effective visual search in general [Parkhurst
et al. 2002]. Novices, on the other hand, tend to exhibit primarily
focal search behavior [Gandomkar and Mello-Thoms 2019]. They
attend to more central and salient regions as exemplified by shorter
saccade lengths and longer and more frequent fixations [Ganesan
et al. 2018; Koide et al. 2015; Kok et al. 2012; Van der Gijp et al.
2017].

The information gained from expert visual search can convey
to novices effective scene processing and attention to relevant fea-
tures. Thus, expertise recognition through scanpath analysis is a
crucial step toward effective gaze training. Research on scanpath
classification for medical expertise is becoming more realized as a
viable approach for teaching interventions. Robust recognition of a
student’s level of understanding through gaze can then accommo-
date the appropriate level of content for that student. This solution
has the ability to smooth the transition between residency and pro-
fessional environments for students by minimizing the knowledge
gap. In the present work, we (1) distinguish scanpath differences
between experts, intermediates and novices using a state of the art
deep-learning classification algorithm (2) and observe search phase
patterns in the temporal saccade features of these expertise levels.

2 SCANPATH ANALYSIS IN MEDICAL
EXPERTISE

Research on the scanning patterns of medical experts has been able
to determine specific strategies for certain images. For example, a
circular pattern is preferred for mammogram inspection [Krupinski
1996; Kundel et al. 2007], spiraling outward for hand x-ray inspec-
tion [Hu et al. 1994], or drilling downwards in 3D Chest CTs [Drew
et al. 2013; Mercan et al. 2018]. For dental radiographs, tooth-by-
tooth and circular viewing patterns were evident depending on the
nature of anomalies present in periapical projections [Hermanson
et al. 2018]. However, for OPTs it was observed that spiraling in-
ward (periphery areas first, then dental areas) and circular (going
back and forth between central and periphery) techniques were
preferred by more experienced clinicians [Grünheid et al. 2013].
Scanpath analysis can quantify these observed differences in visual
search strategies and even discriminate advanced patterns linked
to phases in the search.

Using string alignment for similarity assessment, expertise as
well as performance promote more scanpath similarity when in-
specting chest x-rays, ECGs, and brain scans [Crowe et al. 2018;
Davies et al. 2018; Kok et al. 2016]. Classification based on similarity
has shown high accuracy in distinguishing medical professionals
from novices [Kübler and Kasneci 2015; Kübler et al. 2017]. Specif-
ically for radiography examination, [Li et al. 2019] showed that
experts had more similar patterns than novices when clustering
experts and novices using contrast mining with temporal binning
to extract subsequences of attentional behavior indicative of differ-
ent strategies employed by both groups. However, Gandomkar et
al. [Gandomkar et al. 2017, 2018] classified novice and experts using

an SVM on RQA features and found expertise corresponded with
more unique scanpath dynamics during mammogram inspection
compared to novices [Gandomkar and Mello-Thoms 2019], which
was further corroborated in expert inspection of orthopedic radio-
graphs [Assaf et al. 2016]. These approaches in similarity extraction
focus on the spatial aspect of the gaze behavior, often alluding to
what experts are looking at and, more important, in what relevant
order.

Spatial information from fixations is an important feature in
scanpath analysis of medical experts. However, much like the tem-
poral understanding of fixational behavior, saccade behavior over
time can recognize patterns related to key intervals in expert visual
search. There are growing efforts to incorporate saccade features
(e.g. saccade velocities) to distinguish medical professionals from
novices [Hosp et al. 2021; Li et al. 2012, 2016; Yin et al. 2020]. Con-
cerning temporal saccade behavior, Li et al [Li et al. 2012, 2016]
found expert dermatologists had longer fixation durations coupled
with decreasing saccade amplitudes as an effect of viewing time
compared to novices. Yet, classifying medical experts from the tem-
poral saccade behavior using state-of-the-art scanpath classifiers
has not been heavily investigated. Using saccades over fixations
offers characteristics not bound to AOIs and robust to spatial off-
sets [Jarodzka et al. 2010]. Outside the medical domain, saccade
angle patterns have been used successfully for task and reading
classification [French et al. 2017; Fuhl et al. 2019; Kelton et al. 2019;
Kunze et al. 2013].

To our knowledge, only one study used saccade behavior over
time to classify expert and novice radiologists. Yoon et al. [Yoon
et al. 2018] trained a CNN using gaze velocity profiles and were
able to classify subjects at roughly 70%. In general, deep learning
models are giving more traction to medical expert gaze classifi-
cation. Castner et al. [Castner et al. 2020] proposed an approach
that used image patches at the fixation level as input for a CNN
to extract similar features linked to subsequences in dental expert
and novice scanpaths. Expert similarity in the gaze behavior was
linked to semantic features rather than stimulus specific regional
information and achieved 73% accuracy. Another approach that can
handle more sequential information in the input is recurrent neural
networks (RNNs). One type of RNN that has been used recently in
scanpath classification is Long-Short Term Memory (LSTM) [Tao
and Shyu 2019]. These models have exhibited aptitude for handling
time series data and forecasting [Shao and Soong 2016; Wang et al.
2017]. Their architecture better handles learning relevant informa-
tion from long-term dependencies [Hochreiter and Schmidhuber
1997]. Sodoké et al. [Sodoké et al. 2020] used eye movement se-
quences related to AOIs during an intubation simulation as input
for their CNN-LSTM for expert novice classification and achieved
84% accuracy.

3 PROPOSED APPROACH
3.1 Scanpath Data
The data is a subsample of participants from a larger cohort study
that investigated the visual search strategies involved in dental
OPT inspection and anomaly detection. Participants were sixth
(n=58) and tenth (n=54) semester dental students, plus experienced
dentists (n=26). We consider the sixth semester students as novices,
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Figure 1: The architecture of the classification model.

as they have not yet received any explicit OPT analysis training.
However, tenth semester students are in their final semester, thus
we consider them as intermediates. The expert dentists were from
the University Hospital with an average of 10 years of professional
experience.

Participants were presented OPTs and asked to perform a vi-
sual search task to determine any anomalies. Further details of
the experimental paradigm can be found in [Castner et al. 2018a,
2020]. Sixth and tenth semester students saw the images for 90
seconds and experts for 45 seconds. This shortened duration was
determined because much of the previous literature has shown
that experts are faster at scanning radiographs [Gegenfurtner et al.
2011; Manning et al. 2006; Nodine and Mello-Thoms 2000; Turgeon
and Lam 2016; Van der Gijp et al. 2017]. Students were shown 20
OPTs. Experts were presented 15 OPTs, 10 being the same ones
the students viewed. For compatibility, we evaluated gaze data for
the 10 OPTs all groups viewed. Additionally, to control for effect
of scanpath length, we took the first 45 seconds of the students’
viewing time, in line with the experts’ total viewing time.

Eye tracking data was collected with an SMI RED250 remote eye
tracker with 250 Hz sampling frequency. A multiple-point calibra-
tion was performed prior to presentation with a validation criteria
of deviations less than 1 degree. The SMI software’s standard imple-
mentation of the I-VT algorithm was used for fixation and saccade
detection.

One dataset is defined as the temporal saccade events of one
subject looking at one image. In total, 1159 datasets were used for
the analysis. This is because we removed datasets with low signal
quality (see [Castner et al. 2018b, 2020] for further pre-processing
details).

3.2 LSTM Architecture
We chose to predict three levels of expertise (novice, intermediate,
and expert) from the temporal saccade features using an LSTM
network architecture (illustrated in figure 1). Since LSTM mod-
els require a fixed input sequence length, we empirically deter-
mined this length to be 300. Zero-padding at the end was used for
shorter sequences, i.e., a dataset with 250 saccade events would
receive an additional zero-padding of 50. This approach was sug-
gested in [Goodfellow et al. 2016] and provided the best results.
The network contains two LSTM cells with tanh activation func-
tions, which are both followed by a dropout layer with a dropout
rate of p = 0.2 to reduce overfitting. The first LSTM cell contains
200 units, the second contains 100. The data is finally passed to
a fully connected layer with 3 units and so f tmax activation. The
network was implemented and trained in keras. It was trained for

125 epochs using the Adam optimizer with the default keras param-
eters (learninдrate = 0.001) and categorical crossentropy loss was
used. For training, we upsampled the minority classes, specifically
the novice and expert classes, to achieve a balanced data set.

The input sequences are the timecourse of visual inspection
as determined by a saccade feature. To determine which features
(e.g. length, velocity, peak, etc.) produced the best distinction of
expertise levels, we evaluated them individually.

4 EVALUATION
4.1 Leave-One-Out Cross-Validation
To see whether we can predict a participant’s expertise using sac-
cade features, we performed a Leave-One-Out Cross-Validation
(LOOCV). This cross-validation approach uses each participant
once as the validation set while the remaining participants form the
training set. Although being computationally expensive, LOOCV
provides a reliable way to measure our model’s ability to classify
unseen gaze behavior using saccade features. This method ensures
that the model is trained on most of the data set, thereby reduc-
ing its bias. Additionally, we enforce that the scanpaths of one
participant are not part of both the training and validation set.

Table ?? shows the performance results for each saccade feature.
The highest overall accuracy was the saccade velocity peak (0.72),
then the saccade length (0.70) and saccade velocity average (0.68).
Oddly enough, saccade amplitude produced the lowest accuracy
(0.43).

Regarding expertise levels, the recall for all features promotes
that experts (0.71) and novices (0.68) were easily distinguishable;
yet, intermediates were harder to distinguish (0.51). Saccade length
was the most accurate at recognizing novices (0.77) and experts
(0.79) and, to some extent, intermediates (0.59). Figure 2 shows the
confusion matrix of predicted and actual expertise levels for the
saccade length. Here it is apparent that intermediates were more
often misclassified as experts (0.28).

Figure 2: Confusion matrix representing the performance
for saccade length (px) as feature input for LSTM.

Overall, our LSTM network is able to classify the expertise level
from the saccade behavior above chance level (0.33) for all features
andwith high accuracy for all features except the saccade amplitude.
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Table 1: Precision and recall, calculated for each class.

Total Novice Intermediate Expert

Saccade Feature Accuracy Recall Prec. Recall Prec. Recall Prec.

Saccade Length [px] 0.70 0.77 0.78 0.59 0.70 0.79 0.67
Saccade Amplitude [◦] 0.43 0.42 0.47 0.38 0.42 0.52 0.42
Saccade Acceleration Average [◦/s2] 0.64 0.72 0.70 0.49 0.64 0.76 0.64
Saccade Acceleration Peak [◦/s2] 0.60 0.67 0.68 0.46 0.54 0.70 0.61
Saccade Deceleration Peak [◦/s2] 0.61 0.71 0.70 0.43 0.60 0.73 0.58
Saccade Velocity Average [◦/s] 0.68 0.76 0.74 0.59 0.61 0.70 0.69
Saccade Velocity Peak [◦/s] 0.72 0.76 0.71 0.65 0.67 0.75 0.78
Position of Saccade Peak Velocity [%] 0.62 0.66 0.70 0.49 0.60 0.76 0.61

4.2 Timecourse of saccade features visualized
In an effort to determine how these features distinguish the exper-
tise levels, we plotted the features overtime. Each expertise level
is depicted by the average of all datasets within 250ms windows
(the eye tracker sampling frequency) with noise filtered out using
a simple exponential smoothing function St :

St = αxt + (1 − α)St−1, (1)

where xt is the values of the feature, x , at the current time, t . we
used α value of 0.3. For initialization of St , we took the average
of the first 5 values of x . This smoothing acts as a low pass filter
so big jumps are maintained potentially indicating more global
scanning behavior (i.e., longer saccade length, faster saccade veloc-
ity). Figure 3 shows the best performing saccade features from the
LSTM.

For these features, clear differences are apparent in the saccade
behavior of all expertise levels. The saccade lengths overtime (fig-
ure 3a) show the clearest distinctions between the expertise levels.
Where experts exhibit larger saccade lengths over the entirety of
image viewing compared to novices. However, both novices and
experts seem to employ a similar strategy of larger saccades over
roughly the inital 10 seconds of image viewing, then afterwards
employ shorter saccades. This behavior could indicate that novices
also have an initial search phase that covers a larger span of the
image; though in that same phase, experts cover a larger span of
the image. After this initial search phase, both groups employ more
local investigation of regions, though, again, experts cover a larger
local span compared to novices. Intermediates did not exactly fol-
low this strategy. Rather, their saccade lengths fluctuate back and
forth over the whole time course. This behavior could possibly be
indicative of a large jump to a new region, local inspection of that
region, and a large jump to another new region.

Both average (figure 3b) and peak (figure 3c) saccade velocities
have similar behaviors overtime as a peak for the event is the local
maxima above a specified threshold [SensoMotoric Instruments
2017] and the average is the average velocities of that event. Again,
it is interesting to see that up until 10 seconds of viewing time
there are large differences in the saccade velocities of experts and
novices, where experts exhibit faster velocities than novices ini-
tially. After approximately 10 seconds, the velocities converge and
fewer differences in behavior is apparent. One interpretation of this
behavior could be that experts initially employ faster saccades than

novices; more interesting, however, novices produce faster saccades
overtime, becoming more comparable to experts. Whereas, inter-
mediates exhibit velocities that appear similar to novices initially
(also up to 10 seconds), but then proceed to have highly fluctuating
behavior between slower and faster velocities.

5 DISCUSSION
Our LSTMs using temporal saccade features were highly capable
of distinguishing experts, intermediates, and novices with saccade
velocity and saccade length resulting in the highest accuracy. Ex-
pert behavior differed the most from novices, which is comparable
to other research in deep learning models for medical expert clas-
sification (84%) [Sodoké et al. 2020] as well as for dental expert
classification(73% for LOOCV) [Castner et al. 2020]. Furthermore,
we were able to show that intermediates could be accurately classi-
fied against their expert or novice counterparts.

The strength of these models lies in the behavioral aspect of the
saccades and is completely data driven. Saccade behavior reflects
aspects of the visual search strategy such that, from a physiological
perspective, the cost of triggering a larger saccade needs to be out-
weighed by the certainty of a detected target [Stevenson et al. 1986].
Thus, expert heuristics of the task dictate their saccade behavior,
promoting larger and faster saccades [Evans et al. 2013; Van der
Gijp et al. 2017]. In general, saccade amplitudes have been shown to
decrease over time as a product of search time (i.e. ambient towards
focal processing) [Buswell 1935; Pannasch et al. 2008; Uemura et al.
2014] and has also been linked to task efficiency [Parkhurst et al.
2002; Wolfe et al. 2021]. Li et al. [Li et al. 2012, 2016] found experts
and intermediates had longer fixation durations coupled with de-
creasing saccade amplitudes as an effect of viewing time. Saccade
velocities related to more distant targets exhibit higher peak ve-
locities when falling short of the target [Munoz et al. 1996]. Hosp
et al. [Hosp et al. 2021] found that experts performing laproscopic
surgery had more uniform saccade velocities compared to interme-
diates and novices. Above all, saccade features appear to be robust
against image semantics, which has been found to highly affect
the fixation behavior [Castner et al. 2018b; Donovan and Litchfield
2013; Kok et al. 2012; Turgeon and Lam 2016; Wood et al. 2013].
Thus, the saccade features are ideal for classification models. Our
choice of LSTM is further supported as an appropriate demonstra-
tion for patterns linked to the timecourse. In general, deep learning
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(a) Saccade Length (in pixels) (b) Saccade Average Velocity (c) Saccade Peak Velocity

Figure 3: Timecourse of best performing saccade features for expertise levels. Average values for all groups for 250ms time
windows then smoothed

networks are advantageous because they can handle high dimen-
sional data and are able to easily recognize patterns [Arulkumaran
et al. 2017]. However, they are often a black box where learning hap-
pens through the weighted connections throughout hidden layers
creating a situation where the patterns recognized by the machine
may not be obvious to the researcher.

5.1 Proponent for Holistic Processing
In an effort to provide explainability to the model performance
based on saccade behavior, we visualized the features over time
(see figure 3) and found clear differences between experts, novices,
and intermediates. Especially for saccade length and for the velocity
metrics, we can see an initial interval of highly differing saccade
behavior. For our task, this initial phase was roughly 10 seconds
and depicts experts having longer saccade lengths and higher ve-
locities than novices. The saccade peak velocity, which was the
best performing feature for the LSTM, and the average velocity
also showed clear distinctions in the expertise levels (figures 3b
and 3c). These higher velocities in experts support the theory of
holistic processing [Kundel et al. 2007]. This initial phase could be
the getting-the-gist phase. In contrast, novices have slightly lower
velocities that increase towards similar behavior of experts, thus
more local inspection initially. But after this initial inspection phase,
expert and novice velocities become less distinguishable. Yet, the
saccade length in this initial inspection phase shows an offset be-
tween experts and novices – novices having shorter saccade lengths
– but both experts and novices have steadily decreasing saccade
lengths in this initial inspection phase. This similar trend could indi-
cate that novices also do their own global processing, it may just be
on a smaller scale as compared to experts. Further research beyond
the current qualitative investigation is necessary to solidify this
novel assumption. Previous research in medical image inspection
that could support this behavior has found that experts view the
stimulus as more goal-driven and novices as more stimulus-driven
due to inexperience [Al-Moteri et al. 2017; Fox and Faulkner-Jones
2017; Ganesan et al. 2018; Koide et al. 2015; Kok et al. 2012; Krupin-
ski et al. 2006].

Intermediates, interestingly enough, show saccade lengths more
similar to experts in this phase, but velocities more similar to

novices. This could align with the literature that has found in-
termediate gaze behavior sometimes aligns with novices and some-
times aligns with experts [Brams et al. 2019; Gegenfurtner et al.
2011]. Currently, research regarding how intermediates relate to
the holistic processing theory is under-explored [Brams et al. 2019;
Gegenfurtner et al. 2011; Van der Gijp et al. 2017]. Although the
LSTM could accurately detect intermediates, the recall was lower
and, especially for saccade length, intermediates were slightly (0.28)
misrepresented as experts. Li et al. [Li et al. 2012, 2016] also found
similarities between expert and intermediate dermatologists re-
garding saccade amplitude decreasing over time, but we have only
found this in our initial inspection phase; Afterwards, the saccade
behavior (velocities and lengths) of intermediates fluctuates greatly.
We can only theorize that the visual inspection of intermediates
could be more of a global - focal - global- focal. If this is the case,
these finding are highly interesting to the order in which relevant
information is attended to and processed in intermediates. More-
over, it offers crucial understanding of this in-between stage and
how to develop appropriate learning interventions.

5.2 Limitations and Future Research
It should be noted that we are only investigating the first 45 seconds
of the novices and the intermediates (both groups being students
who investigated OPTs for 90 seconds) in order to control for the
scanpath length affecting the outcome of the classifier as well as to
observe potential patterns the model could have detected among
the expertise levels. It is a valid concern that students need more
time to appropriately inspect and diagnose a medical image, and
future research should address the gaze behavior over a longer time
period to establish other prominent phases in the visual search
strategy.

Another potential confound to saccade behavior related to exper-
tise could be the age of experts. Generally, experts are older than
their novice counterparts – who are often students – and age can
contribute to variations in the saccade behavior [Crabb et al. 2014;
Irving et al. 2006; Munoz et al. 1998]. However, we found intermedi-
ates were, to a small extent, misclassified as experts. For the current
investigation, our intermediate sample were advanced dental stu-
dents in their last semester before beginning their residency. Even
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though they are still considered students, it is interesting that their
search strategies are starting to exhibit similar patterns to those of
experts. Even though we found similar patterns among younger
intermediates and older experts, further investigation is necessary
to better rule out age effects by examining these expertise levels in
an age controlled population.

6 CONCLUSION
To date, intermediate data in conjunction with expert and novice
data has not been investigated enough. The current work addresses
this concern by providing an LSTM network that is capable of
classifying experts, intermediates, and novice dentists with high
accuracy. Our approach uses the temporal saccade features, which
proved to be a highly feasible, data-driven approach that does not
rely on areas of interest, but patterns related to search strategy.
Saccade length and velocity information were the best performing
features and their behavior time was visualized for the expertise
levels. When visualizing the saccade features over time, the be-
havior follows the holistic theory of expert visual exploration that
experts can quickly process the whole scene using longer and more
rapid saccade behavior initially. However, further investigation is
pivotal to understanding intermediate medical image inspection,
especially regarding which saccadic features are more expert-like
and which are more novice-like. This work shows that saccadic
scanpath features are a viable input for intelligent tutoring systems.
Not only can the findings of this work be targeted toward dental
students, but also in other medical domains.
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