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Figure 1: The used process to train tiny models and improve their runtime as well as the used model.

ABSTRACT
In this work, we compare the use of convolution, binary, and de-
cision tree layers in neural networks for the estimation of pupil
landmarks. These landmarks are used for the computation of the
pupil ellipse and have proven to be effective in previous research.
The evaluated structure of the neural networks is the same for all
layers and as small as possible to ensure a real-time application.
The evaluations include the accuracy of the ellipse determination
based on the Jaccard Index and the pupil center. Furthermore, the
CPU runtime is considered to make statements about the real-time
usability. The trained models are also optimized using pruning to
improve the runtime. These optimized nets are also evaluated with
respect to the Jaccard index and the accuracy of the pupil center
estimation. Link to the framework and models.
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1 INTRODUCTION
Eye tracking is findingmore andmore new areas of application such
as driver monitoring [Braunagel et al. 2017; Liu et al. 2002], virtual
reality [Duchowski et al. 2000; Guenter et al. 2012; Patney et al.
2016], augmented reality [Ishimaru et al. 2014; Pfeiffer and Renner
2014], surgery [Eivazi et al. 2016; Fuhl et al. 2016e; Oltean et al.
2001], market research [Hervet et al. 2011; Wedel and Pieters 2008],
self-diagnostic systems [Anderson and Colombo 2009; Karahan et al.
2017; Tennant 1988], human computer interaction [Bulling 2016;
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Bulling and Gellersen 2010], sharing expert knowledge [Kübler et al.
2015; Reingold and Sheridan 2011] and many more.

One challenge that this diverse field of application brings with
it is the need for a non-invasive solution that exists through image-
based eye tracking [Duchowski 2002]. However, different and new
challenges arise due to lighting conditions, imaging techniques like
RGB and NIR, but also due to the diversity of people [Fuhl et al.
2016f; Tonsen et al. 2016]. Another challenge that faces us today
is the use of eye tracking on mobile devices. This is compounded
by the challenges of the limited computing resources available on
mobile devices and the limited runtime of the devices under full
load. This resource restriction leads to the fact that still classical
algorithms are used on mobile devices [Fuhl et al. 2016b, 2017a,
2016d; Santini et al. 2018]. These have the disadvantage that a
constant runtime cannot be guaranteed and that they perform sig-
nificantly worse than machine learning approaches under everyday
conditions [Fuhl et al. 2019a, 2018c, 2019b]. In addition, classical
algorithms have the disadvantage that they cannot be adapted to
new challenges through training. Usually parts or the whole algo-
rithm has to be revised or redesigned. The use of modern machine
learning methods has already delivered significant improvements
in pupil recognition [Fuhl et al. 2019a, 2018c, 2019b] but there has
been little development in the area of real-time capable algorithms
on limited resources.

In this work, we deal with resource-saving approaches of neural
networks for pupil recognition. This is due to the fact that neural
networks have a constant runtime, the training is simple compared
to other machine learning approaches, and is not as susceptible to
unbalanced data. On the one hand, we focus on the real time capa-
bility on only one CPU core. Furthermore, our evaluation evaluates
individual challenges separately to better assess the applicability of
the algorithms. For all evaluations, the runtime as well as the pupil
center and pupil area are used. In the following, a summarizing list
of key points is given for a a quick overview.

1 Trained models for real time pupil ellipse detection.
2 Runtime optimized Framework to train and use the models.
3 Evaluation for different challenges separately.
4 Evaluation regarding runtime, pupil center, and pupil area.

2 RELATEDWORK
Work in the field of pupil detection is mainly concerned with the
issue of robust and reliable detections. For this purpose, there are
already a number of rule-based approaches that have been summa-
rized for head-mounted eye tracking [Fuhl et al. 2016f; Tonsen et al.
2016]. Images for head-mounted eye tracking differ strongly from
images for remote eye tracking, which is why these areas were
considered separately over a long period of time [Fuhl et al. 2016a].
Their main differences are the lower resolution of the eye area for
remote eye tracking as well as a changing perspective due to the
movement of the head which leads to partial occlusions of one eye
by the nose for example [Fuhl et al. 2018a].

In this work, we deal with pupil detection on images regard-
ing head mounted eye tracking. Therefore, already published ap-
proaches in this field are described in detail in the following. The
first major breakthrough in this area for pupil detection was the
use of edges [Świrski et al. 2012]. Since edge images contain a

certain amount of noise, filtering methods were introduced which
make it easier to detect the pupil in them [Fuhl et al. 2015, 2016d].
Based on this, methods for edge combination were presented to
further improve the detection rate [Fuhl et al. 2016d; Santini et al.
2018]. The disadvantage of the purely edge-based methods is the
exact positioning of the edges, which is strongly influenced by mo-
tion blur alone. To overcome this disadvantage, there were several
approaches like Blob Detection [Fuhl et al. 2016d] and adaptive
thresholding [Haro et al. 2000]. Based on the segmented image
over a threshold, the detection rate could be further improved by
splitting the segment into sub-segments [Javadi et al. 2015]. Each
of these segments is then evaluated and the outline of the pupil
is determined by several good subsegments [Javadi et al. 2015]. In
the field of machine learning, there were also approaches for pupil
detection. In the field of neural networks there was a window-based
approach [Fuhl et al. 2016c, 2017b] which even fulfilled the real
time runtime on a single CPU core. Window-based in this con-
text means that an image is divided into small partial images and
each partial image is classified individually. Other approaches were
based on transposed convolution layers and generated segmenta-
tions [Fuhl et al. 2019a; Vera-Olmos and Malpica 2017; Vera-Olmos
et al. 2019; Yiu et al. 2019]. A regression with integrated landmark
detection was also presented which was trained in combination
with a segmentation [Fuhl et al. 2019b]. Further approaches which
are executable on a CPU core in real time compared to neural net-
works for landmark detection and segmentation are CBF [Fuhl et al.
2018c] and BORE [Fuhl et al. 2018b]. CBF [Fuhl et al. 2018c] is based
on decision trees and a circular selection of features. BORE [Fuhl
et al. 2018b], on the other hand, is based on an optimization pro-
cedure that can learn unsupervised and uses circularly oriented
features. This unsupervised optimization is based on the selection
of the best edges for a circular or elliptical object.

In this work, we evaluate neuronal network architectures for
landmark detections which have a real-time executability on one
CPU core as a requirement. With this, we follow the approaches of
tiny architectures [Fuhl et al. 2016c] and landmark detection [Fuhl
et al. 2019b] from the state of the art. In addition, we include the
validity loss [Fuhl and Kasneci 2019] to obtain a quality measure
for each landmark and therefore, a validity of the entire pupil.

3 METHOD
Figure 1 shows our initial model where we used the same architec-
ture for the convolution and decision tree [Fuhl et al. 2020] based
nets. Between the individual convolution blocks, max pooling is
used. In addition, before the first fully connected layer of 1024 neu-
rons, a 50% dropout is used to compress the learned weights. This
compression of the weights is important for the pruning operation.
The input of our model is a 144 × 192 gray scale image and the out-
put are eight x ,y,validity triplets. To train this small architecture
successfully, we used model distillation [Hinton et al. 2015]. Here
the small model is additionally trained by a large pre-trained model
(See Figure 1). This is done by including the output of the large
mesh as an additional loss function. For the large model, we used a
ResNet34 and trained it first on the training data. As a regression
target for our model, we used eight landmarks, which lie on the
pupil ellipse, as was also done in [Fuhl et al. 2019b]. In addition,
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we used the validity loss [Fuhl and Kasneci 2019] with which a
validity value can be assigned to each pupil ellipse, which, in our
case, corresponds to the mean value of all eight validity values. To
determine the ellipse parameters, we applied the OpenCV ellipse
fit to the eight landmarks.

Since this small architecture alone is not enough to get a real
real-time model, we applied two additional techniques for runtime
reduction. One is binarization [Courbariaux et al. 2014] and the
other is clipping. With binarization, all weights greater than zero
are set to the fixed value of one and the negative weights to the
value minus one. This means that for execution, the sign only has
to be reversed in the case of minus one. We only used this binariza-
tion for the convolution layers, since the model would otherwise
become too imprecise. For pruning, however, we used an iterative
approach [Castellano et al. 1997]. This approach deactivates a con-
volution or decision tree and checks the influence on the accuracy
by evaluating the model on the training data. The same applies to
the individual neurons in the penultimate fully connected layer. In
each iteration, all possibilities were tested and the one with the
least influence was selected. This was continued until only 20% of
the original model was left.

To further improve the accuracy of the pruned nets (pruning is
also applied to the models with binary weights), we have used fine
tuning. Here, the learning rate of the convolution layers is set to
zero and only the fully connected layers are trained. For this step,
we have used a learning rate of 10−7. For the general training, we
used a fixed learning rate of 10−5. Additionally, we used the Adam
optimizer with the parameters 0.9 for momentum and 0.999 for the
second momentum. Weight decay has been disabled. The batch size
was set to 200 and the whole training ran for two weeks on a server,
which corresponds to an epoch number of ≈ 100, 000. For data
augmentation, random noise, random occlusions, image overlays
as reflections, image shifts, and bluring are used and applied online
to the data.

4 EVALUATION
For the training, we used the data from [Fuhl et al. 2019a]. These
are segmentations of the known pupil in the wild dataset [Tonsen
et al. 2016]. For the evaluation, we used the segmented data from
[Fuhl et al. 2019b] and an additional 1,000,000 images from the same
studies [Kasneci et al. 2014; Sippel et al. 2014]. Thus, our algorithms
were evaluated on over 1.8 million images.

In table 1 the naming convention of each challenge evaluated
and its description as well as parameters are shown. Examples for
each challenge are shown in Figure 2. As you can see, none of the
challenges used, nor the combinations (C9 and C10), pose a problem
for a human being. The algorithms, however, behave differently.

Figure 3 shows the cumulative accuracy of the algorithms sep-
arately for each challenge. The x-axis is the Euclidean distance
between the found and true pupil center. As you can see, the slight
blurring is not a problem for any algorithm (C1 and C2), but even
a slight addition of noise (C3, C4, and C5) is enough to reduce the
performance of the classical algorithms (ElSe and Pure) by almost
half. In the case of reflections, however, (C6, C7, and C8) only clearly
visible reflections have an enormous influence (C8 see also Figure 2).
Compared to the classical algorithms all neural networks are very

Table 1: Naming convention and description of the evalu-
ated challenges and algorithms.

Challenge Description
C0 Original images
C1, C2 Blur with filter size 9 × 9 and σ = 1.1, σ = 1.2
C3, C4, C5 10%, 20%, and 30% random noise
C6, C7, C8 Reflections with 20%, 40%, and 60% intensity
C9 C1, C3, and C6 combined
C10 C2, C4, and C7 combined
Algorithm Description
ElSe Edge filtering and selection
PuRe Edge filtering and combination
ConvP Pruned tiny neural network
BinP Pruned and binarized tiny neural network
TreeP Pruned tiny tree neural network

Figure 2: The different challenges applied to an image.

robust against the challenges regarding the accuracy of the pupil
center.

Figure 4 shows the Jaccard index (GT∩DTGT∪DT , with GT = Ground
Truth Ellipse and DT = Detected Ellipse) or mean intersection over
union cumulatively for each challenge separately. For the Jaccard
index, a value of 50% or higher is generally considered good. As you
can see, the classic edge-based approaches are more accurate as long
as they can handle the challenge. However, as with accuracy, it is
obvious that only a small amount of noise (C3,C4, and C5) has a huge
impact. For clearly visible reflections (C8), the tiny neural networks
also have problems extracting a clean pupil ellipse. Overall, however,
the neural networks are muchmore robust compared to the classical
algorithms. If one now evaluates the methods with Figure 3 and
Figure 4, one can clearly see that the conventional convolution
is the most accurate and robust (ConvP). In second place are the
decision tree based convolutions (TreeP) and finally the binarized
convolutions (BinP).

However, if the runtime is also taken into account (Figure 5),
this changes, because the decision-tree-based neural networks only
require about one third of the runtime. In addition, one can see that
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Figure 3: Cumulative accuracy in euclidean distance of the
estimated pupil center to the ground truth for all algorithms
and separated per challenge.

Figure 4: Jaccard index (GT∩DTGT∪DT ) between the estimated and
ground truth pupil for all algorithms and separated per chal-
lenge.

the classical algorithms are constant on average but need signifi-
cantly more computing time for certain images where many curved
edges are present (Red crosses in Figure 5).

Table 2 serves to compare the validity signal of the algorithms.
Our validity signal correlates with the accuracy of the result, since
we have used the validity loss of [Fuhl and Kasneci 2019]. However,
this does not apply to the classical algorithms (ElSe and Pure).
Therefore, we decided to use an evaluation based on recall and
precision. To apply percision and recall, we have used a validity
threshold of 5 pixels. This means that if an estimated pupil center
is closer than 5 pixels to the annotation, it is considered correct,
otherwise it is considered false. For each algorithm, the threshold
value for the validity signal was determined iteratively optimal to

Figure 5: The runtime of ElSe and Pure in comparison to the
pruned versions of the convolution, tree, and binary neu-
ronal network using Whisker plots. Evaluated on one sin-
gle CPU core (i5). The red crosses are outliers of the fitted
normal distribution.

Table 2: Precision (TP/AllPositives) and Recall TP/(TP + FN )

with the optimal selected validity threshold evaluated over
all challenges.

Algorithm Precision Recall
ElSe 100% 53.37%
Pure 100% 80.21%
ConvP 100% 89.56%
TreeP 100% 86.83%
BinP 100% 75.65%

achive the best recall result. (TP/(TP + FN )). This makes it easier
for algorithms that generally have a worse accuracy (See Figure 3),
but gives a good indication of the reliability of the validity signal.
As you can see, all algorithms achieve a precision of 100%, which is
because there were more correct than incorrect pupil centers and
therefore, it was weighted heavier for the recall calculation. It can
be seen that ConvP and TreeP are the best performers. Pure is also
good but this is influenced by the much lower detection rate over
all challenges.

5 CONCLUSION
In this work we presented different neural networks for real-time
use on a single CPU core. For this, we used modern methods like
distillation and pruning. As an additional comparison, we have
binarized a neural network. All networks were evaluated with
respect to their accuracy and reliability under different challenges
and also the runtime was considered. The trained models and a
runtime optimized framework are made available to the public
together with this work.
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