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Abstract—As interest in autonomous driving increases, efforts
are being made to meet requirements for the high-level au-
tomation of vehicles. In this context, the functionality inside the
vehicle cabin plays a key role in ensuring a safe and pleasant
journey for driver and passenger alike. At the same time, recent
advances in the field of artificial intelligence (AI) have enabled a
whole range of new applications and assistance systems to solve
automated problems in the vehicle cabin. This paper presents
a thorough survey on existing work that utilizes AI methods
for use-cases inside the driving cabin, focusing, in particular,
on application scenarios related to (1) driving safety and (2)
driving comfort. Results from the surveyed works show that
AI technology has a promising future in tackling in-cabin tasks
within the autonomous driving aspect.

I. INTRODUCTION

Autonomous driving is among the most widely discussed
topics in the recent decade. As a new transportation technol-
ogy, the autonomous vehicle is designed to surpass human
drivers in many aspects, particular in safety. However, in
order to realize fully autonomous driving, different levels of
autonomy are planned to be achieved successively. According
to the Taxonomy and Definitions for Terms Related to On-
Road Motor Vehicle Automated Driving Systems by the SAE
International [1], there are six different levels leading up to
full autonomy, with Level 0 representing “fully manual” and
Level 5 representing “fully autonomous” driving. The vehicles
functioning between Level 0 and Level 5 are all regarded as
semi-autonomous vehicles.

Current research and product development is mainly target-
ing Level 3 (L3) and Level 4 (L4). For L3, the presence of
the driver is required to resolve driving situations that are not
manageable by automation. The task for autonomous vehicles
is to handle driving under certain conditions, such as driving
on a highway or in a city traffic jam. Many vehicle man-
ufacturers are now focusing on incorporating L3 automated
systems into their products, e.g. Audi Traffic Jam Pilot [2].
From L4 on, requests of the takeover from a human driver
are no longer necessary. The vehicle is required to analyze
driving situations and make informed decisions, like when
to change lanes, turn, accelerate, or brake. Even in the case
of a device failure, the autonomous systems should be able
to safely handle these actions independently. In L4, however,
manual intervention does remain for particularly challenging
circumstances, such as a system failure. L5 vehicles can

operate under all situations, but also provide a more refined,
higher quality of services.

Currently, the autonomous vehicles have achieved L3 and
progressing towards L4. Human drivers are still the main de-
cision makers and supervise the entire system. Consequently,
an aspect of ongoing research in L3 is to find the optimal
way of assisting human drivers and to provide a smooth
and safe transition from human to autonomous driving and
back again. Driver-related activities within the vehicle’s cabin
should be monitored and analyzed by the system to achieve
not only a safe and comfortable drive, but to ensure the
system’s ability to smoothly handle a takeover situation. Most
of the tasks in autonomous driving are related to “perception”.
As human beings, we receive information mostly through
vision and speech. We analyze this information and respond
accordingly to different events. To endow vehicles with the
same capability of understanding, researchers are mounting AI
technology on autonomous vehicles to automate the perception
of surroundings. Additionally, with emerging technologies
such as Augmented/Virtual reality (AR/VR) new ways of
personalized driving assistance, information, navigation and
entertainment [3]–[5] have been enabled. Given the broad
application of AI technologies inside the driving cabin, we are
performing a thorough survey of existing studies conducted
by researchers and system developers. Our motivation is to
identify and highlight the similarities and differences within
existing works in order to envision new applications. In
this context, similarities means the identification of different
applications using the same input data modality or algorithms.
This often indicates an emerging trend of research. Moreover,
resource efficiency can be improved if one input feature (or
hardware) can be used in different applications. A diversity of
algorithms can be used to solve similar problems. Reviewing
and referring to existing works can serve as an inspiration
for readers seeking concrete solutions for specific tasks in
autonomous driving. We aim to provide a clear overview of
commonly used hardware and algorithms, with a strong focus
on the SAEs L3 and L4. L3 and L4 will be discussed with an
emphasis on considerations for safety and comfort.

The paper is organized following: in Section II, we will
discuss different applications that contribute to safety and
employed methodological approaches. Section III introduces
tasks aimed at comfortable driving. In the last section, we
summarize all the surveyed works and provide a brief outlook.
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TABLE I
USE-CASES FOR DRIVING SAFETY.

AN OVERVIEW OF USE-CASES FOR SAFETY. FOR EACH USE-CASE WE SUMMARIZE THE TYPICALLY EMPLOYED INPUT FEATURES AND THE AI
METHODOLOGY. ROUND BRACKETS MARK THE SOURCE OF THE FEATURE: D = DRIVER, V = VEHICLE, O = OUTSIDE/ROAD VIEW.

Use-case Feature Method Reference

Emotion detection
physiological information (D)
acoustic signals (D)
image of driver (D)

FFNN, CNN
SVM
Fuzzy Logic System
GMM (regression model)

[15]–[22]

Driver

Status

Monitoring

Fatigue detection

eyelid movement (D)
mouth movement (D)
head posture (D)
physiological information (D)
vehicle dynamics (V)

FFNN
SVM
Fuzzy Logic System

[24], [25]
[29], [30]

Distraction detection

image of driver and road (D&O)
physiological information (D)
head posture (D)
vehicle dynamics (V)
driver behavior (D)

Semi-Supervised Learning
SVM, Random Forests
Maximal Information Coefficient
CNN
GMM (preprocessing)

[31], [36], [37], [39]–[44]

Attention detection
eye gaze (D)
head posture (D)
full images of driver (D)

3D CNN [32]–[34]

Driving Driver intention analysis
vehicle position and dynamics (V)
image of driver and road (D&O)
head posture (D)

SVM, Random Forest
GMM (regression model)
RNN/LSTM
HMM
3D CNN

[45]–[52]

Assistance Traffic hazards warning
head posture (D)
vehicle dynamics (V)
image of road (O)

Fuzzy logic system [54]

Takeover

Readiness
Takeover readiness evaluation

vehicle dynamics (V)
eye gaze (D)
driver behavior (D)

SVM, KNN [60]

II. IN-CABIN USE-CASES FOR DRIVING SAFETY

According to the National Highway Traffic Safety Admin-
istration (NHTSA) in the USA, 94% of serious accidents are
caused by errors behind the wheel [6]. One important task for
an autonomous driving system is to ensure the safety of the
driver, passengers and other vehicles and pedestrians on the
road. Since SAE L3 and L4 require a driver’s presence, the
system is responsible for monitoring the driver. For instance,
the system needs to assess whether or not the driver is in a
proper state for driving and to assist the driver in the decision-
making process. Table I presents a short overview of the use-
cases discussed in the following sections.

A. Driver status monitoring

Various Driver Monitoring Systems (DMS) have been devel-
oped over the past few years. Due to the rapid development
of AI technology, some mature systems are currently being
utilized in the market. For example, Seeing Machines [7],
Valeo Driver Monitoring [8], and SmartEye Driver Monitoring
System [9]. These systems are usually based on image infor-
mation from a camera mounted in front of the driver. They
infer information about the driver based on the analysis of her
facial expression, eye gazes or head posture. Physiological
signals, such as heart rate and skin temperature can also
contain valuable information about the driver. Utilizing this
information is helpful when gauging the driver’s vigilance,
emotions and level of attention or distraction.

1) Emotion detection: The emotional status of a driver
can heavily influence the decision-making process and overall
behavior on the road. It is important to analyze the emotional
status of the driver and process this information accordingly

within the automated system. In particular, “Aggressive driv-
ing,” as defined by NHTSA, has been researched for decades
regarding its negative influence on road safety [10]. Drivers
often respond to aggressive acts by another driver with anger
and mirrored aggression. [11]. Due to this common response
from drivers, it is important to monitor driver emotions peri-
odically. Automated recognition of a driver’s emotional state
can capture warnings of aggressive or distracted driving due
to “road rage” before behavior escalates, resulting in a safer
driving experience.

Since emotions correlate strongly with facial expressions,
automated methods for emotion recognition based on images
have been the focus of research over the last two decades. A
few of these approaches, [12], [13] use Cohn and Kanade’s
dataset [14], which contains a large number of facial image
sequences from different people. [13] proposes a system that
first locates the face in the image and then classifies the
emotions based on the Gabor magnitude representations of the
located faces. An approach with AdaSVM provides the best
performance in this work: Gabor features chosen by Adaboost
were used as the training input for Supported Vector Machine
(SVM) classifier. [12] uses Local Binary Patterns (LBP) as
the discriminative features rather than Gabor features which
allows for a very fast feature extraction. Similarly, an SVM is
employed as the classifier for emotion recognition.

When it comes to in-cabin driver emotion detection, image,
speech and physiological signals are often used for detecting
emotion. A motion estimation system named “Affectiva” [22],
which is also applied in automotive applications, uses driver
facial images and speech signals. Most of the research work
on this topic focuses on physiological signals due to suitability
and accuracy. In [15]–[17], biopotentials are measured by
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various medical techniques: electromyogram (EMG) in [16],
electrocardiogram (ECG) in [16], [17], electroencephalogram
(EEG) in [15] and electroencephalogram activity (EDA) in
[16], [17]. Besides biopotential, skin temperature is also used
in [17]–[19], as is respiration in [16], [18] and heart rate in
[19]. In addition to physiological features, a driver’s acoustic
signals are processed for this same purpose in [20], [21].
Speech may not offer as robust a result as biosignals, but
acquisition of acoustic signals is simple and unobtrusive.

A diverse selection of emotions is required to effectively
train machine learning models. Over the last seven years, a
massive amount of video and audio data from all over the
world has been collected for the emotion AI system [22]. In
[16], [18], [19], data is recorded when different affective be-
haviors from drivers are elicited in simulated driving scenarios
in the lab. In [20], however, real world speech clips are used.
A publicly available speech database called Emo-DB [23] is
used in [21].

With the help of large amounts of real world data, very
deep Convolutional Neural Networks (CNNs) are trained for
the classification of seven different emotion [22]. In [16],
[17], four different classes of emotion (excited, relaxed, an-
gry and sad) are detectable by Feed Forward Neural Net-
works (FFNNs). [17] uses cellular neural network, while
[16] combines FFNN and fuzzy inference systems. [19] also
uses FFNNs but trains with different optimizers: Marquardt
Backpropagation (MBP) and Resilient Backpropagation (RBP)
algorithms. The best results are achieved by RBP amongst five
different emotional states with 91.9% accuracy. The authors
from [18] propose a novel latent variable model and also
introduce the temporal state into the model. Training this
model is similar to training a Gaussian Mixture model (GMM).

Audio streams are used as system inputs and extract acoustic
features like speech intensity, pitch, and Mel-Frequency Cep-
stral Coefficients (MFCC) in [20], [21]. An SVM and Bayesian
Quadratic Discriminate Classifier are trained in [20] and [21],
respectively. Moreover, [20] uses speech enhancement to resist
the influence of noisy background influence. It also shows
that including gender information results in better overall
recognition.

2) Fatigue detection: Drowsy driving greatly impacts the
safety of those on the road. It is necessary to remind drivers
to rest when the fatigue is detected. The most popular feature
for measuring fatigue is eyelid movement, particularly the
percentage of eyelid closure (PERCLOS) [26]. Other useful
information can include facial expressions, physiological in-
formation (heart rate) and vehicle data (car speed, steering
wheel angle, position on the lane).

For successful fatigue detection, eye metrics are useful [24],
[25], [27]–[30]. Such features can be collected simply by
using a regular camera mounted in front of the driver. In
[24], yawning (mouth movement) is measured along with eye
closure; in [30], vehicle data is also proven to be useful.
[27] uses the velocity of eyelid to detect the eye blink for
assessing drowsiness. Eye blinking and head movements are
used together as input signals of logic regression models
for drowsiness state classification in [28]. [29] compares
the detection accuracy using behavioral data (eye and head

movement), physiological information and vehicle data.
Different machine learning models can be applied to de-

termine whether or not the driver is exhausted. [24] uses a
Fuzzy Expert System to classify the state of the driver, while
[25] deploys a binary SVM classifier for detecting open and
closed eyes. [29], [30] show that the FFNN is also suitable for
measuring levels of drowsiness. Especially in [29], the FFNN
can even predict when the driver will reach a given level.

3) Distraction detection: Distraction is another major threat
to driving safety, motivating researchers to study activities that
often lead to preoccupied driving.

According to [35], distraction has four distinct categories:
visual, cognitive, auditory, and bio-mechanical. Visual dis-
traction is defined as “eye-off-the-road”, which is obvious
to detect. In this instance, eye gaze is an essential feature
for detection. In [31], the proposed method estimates a 3D
head pose and a 3D eye gaze direction using a low-cost CCD
(charge-coupled device) camera. Estimations are measured
with respect to the camera coordinate system. With the rotation
matrix from the camera coordinate to the world coordinate
system, the driver’s observance of the road can be measured.
An SVM classifier is used first for detecting sunglasses. If
sunglasses are detected, the estimation relies only on the head
pose. [38] proposes a standardized framework for evaluating
a system, which tracks driver head movements to alert in case
the driver is distracted. Such a standard makes it possible
to fairly evaluate different driver head tracking systems. In
addition, this framework introduces a ground-truth data acqui-
sition system, PolhemusTM Patriot, and takes driver-related
information (gender, race and age, etc.) into account. [39]
uses eye movements and driving data to classify normal and
distracted driving in real time. It also proves that the SVM
classifier is suitable for such a task.

Compared with visual distraction, cognitive distraction such
as daydreaming or becoming “lost in thought” is harder to
detect. Cognitive distraction is also called “mind-off-the-road”,
indicating a loss of situation awareness. Facial expressions and
driving performance reflect this distraction. [36] explores the
effect of both distractions with the help of multi-modality fea-
tures from CAN-Bus, microphone, and camera recording road
and driver. Classifiers employ these feature representations to
discriminate between different distraction levels. The causes
of cognitive distractions are variable. Estimation of drivers’
workloads can also impact the cognitive state of the driver. To
measure workloads, [37] proposes a new nonlinear causality
detection method called error reduction ratio causality, which
identifies the important variables. The variables used here
include Skin Conductance Response (SCR), hand temperature
and heart rate, as well as GPS position and acceleration
recorded from real-world driving. An SVM is trained after-
wards to select the right model for measurement.

[40] studies audio-cognitive distraction. The task for the
driver is to count how many times each of the target sounds
appear. An eye tracker records eye and head movement data.
This data is then used to train a Laplacian SVM and Semi-
Supervised Extreme Learning Machine. The study also proves
that using a semi-supervised learning algorithm outperforms
supervised learning when giving more unlabeled data.
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Bio-mechanical distraction refers to adjusting devices man-
ually. For example, adjusting the radio. The solution is to
simplify the Human-Machine-Interface (HMI) in the cabin,
which will be discussed in Section III.

Performing secondary tasks always causes more than one
distraction. Distracting secondary tasks include talking on
a cell phone or drinking/eating. Deep neural networks can
recognize these behaviors which are very helpful in action
recognition. For example in [43], [44], seven activities are
divided into two groups: normal driving (normal driving, right
mirror checking, rear mirror checking and left mirror check-
ing) and distraction (using in-vehicle radio device, texting and
answering the mobile phone). The dataset is collected using
Kinect, so the images and the coordinates of head centre or
upper body joints are recorded. [44] uses Random Forests
(RF), Maximal Information Coefficient (MIC) and a FFNN
as classifiers using the head and body features. [43] only
uses images of drivers. The images are first processed by
a GMM to segment the driver’s body, and then used for
CNNs training. The CNN backbones used in experiments are
AlexNet, GoogLeNet, and ResNet50. The best performance is
achieved by AlexNet which also surpasses the result in [44].
In [41], [42], CNNs such as AlexNet, InceptionV3 and BN-
Inception are trained in end-to-end manner. These networks
achieve distracting activity recognition with high accuracy.

4) Attention detection: Another important task for DMS is
to understand where the driver is looking while driving. With
a high-level criticallity of the event detected (e.g. a pedestrian
crossing the street), the system warns the driver if the driver is
not paying attention [61], [62]. This task is one specific use-
case in visual attention modeling. Visual saliency and gaze are
common tools for measuring the attentive area.

Eye-tracking glasses have the ability to track the precious
position of the gaze, but it is challenging for the driver to wear
equipment while driving. In this case, head posture estimation
assists with gaze estimation. In [32], a pipeline is proposed:
facial feature detection and tracking – (3D) head posture
estimation – gaze region estimation. Besides using handcrafted
features such as facial landmarks, [33] proposes a deep CNN
for localizing the driver’s head and shoulder position in the
depth images.

It is also possible to predict the focus of attention without
using head posture information. For instance, in [34], the raw
video, optical flow and semantic segmentation information
are fed to a multi-branch 3D-CNN for end-to-end training,
in order to predict the focus area on the road image. In the
future, attention prediction for human drivers can contribute
to attention mechanisms for autonomous perception functions.

B. Driving assistance
In Section II-A, we discussed the Driver Monitoring System,

a system that focuses on and contributes to safe driving. The
Advanced Driver Assistance System (ADAS) is also designed
to avoid accidents by alerting the driver to potential problems
or by taking over the control of the vehicle. In the last decades,
functions such as anticipating the intention of drivers and
analyzing on-road traffic have also been studied. This section
introduces these functions integrated into ADAS.

1) Driver intention analysis: Accelerating, braking, steer-
ing, turning and lane changing are common tasks during
driving. Wrong decisions can result in critical situations or
triggering accidents. ADAS assists with lane keeping or chang-
ing and prevents some dangerous maneuvers. In order to assist
the driver, it has to understand the driving context. [45] uses
visual gist as the image descriptor for pre-attentive percep-
tion. The images are captured by three on-board cameras. A
Random Forest (RF) classifier trained with the gist features
can differentiate road contexts such as single-lane, crossing,
or T-junction. Furthermore, it can successfully predict driving
actions in real time using driving context information.

An important driving behavior is lane changing. In [46]–
[49], [52], lane changing behavior is anticipated. [46] predicts
three classes: right/left lane change and no lane change. The
features are collected by a vision and Inertial Measurement
Unit (IMU) based lane tracker. The position of the vehicle
in respect to the lane, more specifically the lateral position
and the steering angle, are recorded. The proposed prediction
model includes a Bayesian filter and an SVM classifier. The
Bayesian filter takes the output from the SVM and produces
a final prediction. [52] predicts whether or not lane changing
occurs with the help of the Sparse Bayesian Learning (SBL)
model. The input features are lane positional information
acquired from the camera focused on the road, vehicle param-
eters from CAN-Bus, and driver head posture obtained from
the image of the driver. In [48], [49], more driving behaviors
are included in addition to the three lane changing classes,
i.e. right/left turn. The input information sources are various
in this dataset. They include videos of drivers and the road
outside the vehicle, vehicle dynamics, GPS, and street maps.
[49] makes use of all this information and trains a Recurrent
Neural Network (RNN) with Long-Short Term Memory Cells
(LSTM). According to the results in [48], this architecture
achieves the best result when compared with SVM, RF or
Hidden Markov Model (HMM). Moreover, it anticipates the
action with an average 3.58s. Using videos of drivers, end-
to-end prediction is also accurate. For instance, in [50] the
3D ResNeXt-101 with a LSTM layer on the top is trained in
end-to-end style. The results in [51] prove that videos towards
roads have complementary information as driver videos, which
should also be considered in driver maneuver prediction. [47]
takes the personalities of drivers into account because ADAS
should comply with the driver’s habits to ensure overall safety.
It proposes using a GMM to adjust the sinusoidal lane change
kinematic model according to individual driving styles.

Finally yet importantly, [53] provides an overview of a
multi-module Driver Intention Inference (DII) system designed
for lane changing intention detection. This system consists of
different modules: traffic context perception module, vehicle
dynamic module, driver behavior recognition module and
driver intention inference module. From this work, we can
see an emerging trend of multi-module fusion in ADAS.

2) Traffic hazards warning: Not only should ADAS focus
on the intention of the driver, but it should also simultaneously
observe on-road traffic. This can prevent some traffic accidents
by correlating information and notifying the driver in a timely
manner. On-road hazards include rear-end crashes, unnoticed
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pedestrians, speed breakers or traffic signs.
One possible solution for this task is to combine the

driver intention prediction/driver status detection with on-road
traffic detection. It requires driver monitoring, object detec-
tion/tracking, and data fusion modules to work simultaneously.
Fig. 1 shows the components of the system. Traffic detection
that only uses on-road information is not related to in-cabin
applications and will not be discussed.

Traffic
Hazards
Warning

Driver Status Traffic on Road

Driver Intention

In-Cabin

Out-Cabin

Fig. 1. Traffic hazards warning system includes both in- and out-cabin
analysis.

The system in [54] consists of two modules in Fig. 1. Driver
head posture estimation is a preliminary part of driver attention
analysis. A 3D face model is trained using an asymmetric
face appearance model. Mapping 2D feature-points into a 3D
face helps to determine the direction of the driver’s attention.
The second component of the driver-assistance system is road
traffic detection, which uses global Haar-like features (GHaar)
classifier to detect vehicles ahead on the road. Additionally,
the system can estimate the distance and the angle between the
detected vehicle and the ego vehicle in relation to the right lane
of the road. A fuzzy logic system extrapolates future driving
risks based on driver and on-road information.

Besides other vehicles, pedestrians and bicycles are other
important factors on road. In [55], the authors developed a
pedestrian collision warning system, equipped with a volu-
metric head-up display (HUD) in the cabin to identify when
and where pedestrians are approaching. This work also shows
that the Augmented Reality (AR) technique is both effective
and intuitive for warning systems within the cabin.

C. Take-over readiness evaluation

As mentioned, at SAE L3 the human driver should stand by
and be prepared to take over control of the vehicle. Takeover
readiness defines the driver’s ability to regain control of the
vehicle from the automated mode. Non-driving related tasks
during automated driving may interfere with a driver’s ability
to regain control of the vehicle [56]. Thus, it is necessary to
help the driver stay prepared for a takeover. In this section,
we discuss some methodologies that measure driver takeover
readiness.

To study the readiness of the driver, takeover request (TOR)
time is a key term. TOR measures the time between the request
for takeover and the critical situation (by which time the driver
msut maintain control). Determining when to alert the driver
to a takeover situation is critical. [58] studies four different

TOR times. The results show that the TOR resulting from
the performance-based method provides the shortest reaction
time and highest satisfaction for drivers. This performance-
based method considers the influence of driving behaviors. It
was originally designed for the airborne collision avoidance
system. Besides the TOR time, there are other factors that
may influence takeover behavior. Factors may include traffic
situation complexity, ego-motion of the vehicle, and type
of secondary tasks, etc. [56] studies how the complexity of
the driving task and secondary task impact takeover reaction
time. A mathematical formula estimates takeover reaction time
based on experimental data. [57] creates a concept system
that can estimate readiness directly by using driver behavior
information and biometric data. Extracted eye gazes and
head movements are driver behaviors while heart rate and
respiration rate are considered biometric data.

There is relatively little research employing machine learn-
ing methods to estimate driver readiness, with the exception of
[60], [63], [64]. The authors use multi-modality data to train
different classifiers, such as K-Nearest Neighbors (KNN) and
SVM. The studied data includes the maximum deviation from
the lane center, the minimum distance to the leading vehicle
and drivers’ eye gazes and behaviors. These classifiers predict
the quality of takeover readiness. The best result is achieved
by a linear SVM: the accuracy is 79%.

In addition to the estimation of takeover readiness, the
system is responsible for keeping the driver constantly aware
of the situation both inside and outside of the vehicle. An
Interactive Automation Control System (IACS) designed in
[59] keeps the driver aware of the TOR on a display. Exper-
iment results show that the response time to TOR and the
total number of collisions decreases due to support from this
system. [79] proposes a system which employs AR. In this
system, AR is used to show a digital twin of the driver’s car
on in simulation of a potential accident where the TOR is
necessary. After alerting the driver to the coming situation,
the TOR is executed. This work indicates that a simulation in
cockpit can help the driver better understand traffic situations
and handle the TOR more effectively.

One limitation is that all projects presented here are con-
ducted using driving simulators. Since the takeover task is a
safety-critical issue, more experiments should be conducted in
real-world driving situations.

III. IN-CABIN USE-CASES FOR DRIVING COMFORT

Autonomous vehicle technology makes driving not only safe
but also relaxing. Improving driver and passenger comfort
level is another key research topic. Tasks in the comfort sector
are generally non-driving related tasks. In this section, we
introduce some works aiming to optimizing in-cabin operating
systems by making vehicles more intelligent.

A. Convenience

“Convenience” describes the ability of the system to accom-
plish non-driving related tasks automatically according to the
needs of drivers and passengers. An intelligent system should
recognize needs in an accurate and timely manner. In order
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to perceive needs, AI methods are very suitable because they
can analyze human actions and the information encoded within
human actions. A new dataset named “Drive&Act” is collected
for driver action recognition purpose [65]. It is collected in
driving mode as well as in automated driving mode, and the
behaviors are fine-grained labeled. This dataset includes many
secondary task actions like putting on sunglasses or reading
magazines. The videos are recorded by six synchronized
cameras inside the cabin in RGB, depth, infrared and bodypose
modalities. Recognizing these behaviors correctly can increase
comfort. For instance, the visor should flip down automatically
when the driver is putting on sunglasses. The appearance of
this dataset supplements a large benchmark for in-cabin action
recognition. The authors in [65] also train different models
with this dataset. The best performance is achieved by the 3D
CNN-based model. Results indicate that AI methods have a
promising future for in-cabin applications.

Listening to music can provide drivers and passengers with
a more comfortable journey. Research such as [77] shows that
listening to suitable music can improve the driver’s mood and
fatigue state resulting in improved driving performance. [77]
proposes a framework which detects the driver’s mood-fatigue
status and recommends music accordingly. This framework
makes use of different smartphone sensors to gauge each
drivers’ specific situation and to employ intelligent analysis.
For example, the system will engage the closest algorithm to
classify different music moods.

B. Human-Machine-Interface

The more functional automated vehicles are, the more com-
plex HMI can become. Some crucial principles are mentioned
in [66], [67] for designing the HMI: HMI should both provide
comfort and stimulate an appropriate level of attention from
users. HMI should maintain minimal content in order to reduce
distraction. For instance, [68] investigates the position of the
display for the haptic rotary device in a conventional vehicle
HMI system. The results show that cluster display position
reduces lane position deviation during secondary tasks.

The authors in [78] propose using AR to realize a multi-
layer floating user interface system in the vehicle. This system
employs stereoscopic depth to arrange different information
on 3-layer displays. Critical information, such as “low fuel”
warning, is shared on the nearest screen. Less critical items
are shifted to the back layers and blurred. This system aims
at providing a large amount of information without greatly
distracting drivers.

Hand gestures and speech are becoming a popular means of
simplifying HMI systems because they reduce visual and bio-
mechanical distraction during driving. Different sensors and
recognition algorithms are used for hand gesture recognition
in the vehicular environment. For example, (1) [73] uses mm-
wavelength radar sensor and trains a Random Forest. On
average, the system performs above 90% accuracy for all six
gestures classes; (2) in [74], multiple modalities including
RGB, depth/infrared images and 3D hand joints are tested.
They train two networks: A C3D network and a Long-Short
Term Memory (LSTM). The best model, with a recognition

accuracy of 94.4% for 12 classes, is the LSTM model, using
3D hand joints as input modality. In speech recognition,
special uses for driving scenarios are explored. Some examples
include: natural language analysis based on a RNN archi-
tecture for commands like “set/change destination or driving
speed” in [75], or the the vehicle control system’s defense
strategy using an SVM classifier that can resist attacks from
hidden voice commands in [76].

Another traditional HMI element in vehicles is the HVAC
(Heating, ventilation, and air conditioning) system. Normally,
the controllers are hand-coded, requiring attention from the
driver. In [71], a control system deploying NN architecture can
realize automatic control of the cabin’s thermal environment.
At first, the model collects data while the user is adjusting
the system. After training, the model can learn the user’s
preference and control the thermal environment accordingly.
Different machine learning techniques can be used to realize
this goal. In [72], the automatic control is realized using
Reinforcement Learning (RL). It should be noted that the
RL controller consumes less energy and produces a more
comfortable environment than manual control approaches.

For fully autonomous cars, [67] proposes that HMI should
only contain commands for “start”, “stop” and “choose the
destination”. Additionally, other interfaces for entertainment
or maps should be included in personal mobile devices. The
advantages are the separation of safety critical functions from
non-critical ones, whose personalization remains.

As the SAE level increases, drivers can focus less on driving
tasks and have more access to HMIs. Human factors become
more influential in the HMI systems. [69] introduces an HMI
framework which clusters human factors (of both drivers and
other users of the road) as dynamic factors. Different HMIs
are chosen depending on these influential factors. They also
propose an external HMI for communicating with other users
on the road. One specific and important human factor for
autonomous driving is trust in the vehicle. [70] focuses on
how to increase human trust for an autonomous car via HMIs.
The authors suggest that HMI framework should take multiple
events over a period of time into account rather than focus on
one isolated event.

C. Navigation

Navigation is one of the most pronounced functions in
modern vehicles. Many drivers have experienced difficulty,
trying to concentrate on the road while viewing a personal
navigation device. Using an AR Head-Up Display (HUD) to
show the navigational path, traffic signs, and landmarks is a
practical solution. The work in [82] proves that drivers prefer
navigation using AR HUD to other traditional navigation
devices, namely egocentric street view and map view which
shows the vehicle within the context of its surroundings on the
LCD display. On the HUD, directions are listed on a narrow
semi-transparent surface that is suspended above the center of
the road at a height of about 2 meters. Moreover, according
to eye gazes measurements, drivers spend 5.7 sec and 4.2 sec
more per minute looking at the road ahead in comparison to
LCD street view and map view, respectively.
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In [80], the framework can detect vehicles and traffic signs
and project them onto the AR-HUD, helping drivers to avoid
some dangerous accidents in the process. For detection, the
framework uses AdaBoost learning algorithm to train with the
Haar features of vehicles and traffic signs. The next stage after
detection is to find positions on the HUD for the projection
of virtual objects. To do this, camera parameters and relative
position of the camera, with respect to objects, are required for
calculation. With the help of AR, virtual objects are attached
to real objects. In this case, drivers will be alerted to critical
information on the road in an unobtrusive way.

An investigation of the effectiveness of different presenta-
tions of AR enhanced navigational instructions in [81] shows:
The most effective arrangement is to use boxes that enclose
a landmark, such as “turn right in 120 meters”. The response
times and success rates are enhanced by 43.1% and 26.2%
compared to the conventional representation (only the sign).

IV. CONCLUSION

In this section, we summarize all AI techniques imple-
mented in the in-cabin use-cases we reviewed as well as
corresponding features of these applications. The in-cabin use-
cases can be abstracted into the following topics: classification
problem, regression problem and sensor fusion problem. For
example, to predict whether or not the driver is tired (in [25])
is a classification problem. To predict the drowsiness level (in
[29]) is a regression problem. A typical occasion for sensor
fusion is the “traffic hazards warning” system proposed in [54].
When enough data is provided, AI methods can easily tackle
the three problems outlined. It also explains the frequency of
utilization of five techniques shown in Fig. 2.

50.0%

40.5%

2.4%
2.4%

4.7%

Machine Learning

Deep Learning

Reinforcement Learning

Markov Decision Process

Fuzzy Logic

Fig. 2. Frequency of utilization of different AI methods in in-cabin use-cases

Fig. 2 shows the different AI techniques in all examined
papers. It is worth noting that “Deep Learning” refers to the
learning algorithms that use layered structures (Artificial Neu-
ral Networks). Although it is a subset of “Machine Learning”,
it is regarded as a separated set due to its importance in
Computer Vision research. The “Machine Learning” set refers
to algorithms with the exception of “Deep Learning”. There

are a total 42 works that utilize AI techniques. Since Machine
Learning algorithms and Deep Learning networks are very
effective when solving classification and regression problems,
both dominate the surveyed works. Concretely, 50.0% (21
papers) of the applications were solved by Machine Learning
algorithms and 40.5% (17 papers) used Deep Learning net-
works. The Fuzzy Logic System (4.7%) is used when there
are multiple inputs from different sensors, as exhibited in [24],
[55].

We summarize the use-cases discused in this paper and
their relationship to SAE L3, L4 and L5 in the Table II. The
Xindicates that the use-case is an important function at this
level. As shown in the Table II, driving assistance, takeover
readiness and navigation are no longer necessary in L4 and
L5 because a human driver will not intervene. The purpose
of driver status monitoring also changes from L3 to L4. The
L3 system focuses on driver anomaly while L4 and L5 are
concerned with passenger emotion and satisfaction.

TABLE II
USE-CASES AND THEIR IMPLEMENTATIONS IN DIFFERENT SAE LEVELS

(FROM L3 TO L5)

L3 L4 L5
driver status monitoring X X X
driving assistance X
takeover readiness X
convenience X X X
HMI X X X
navigation X

At the end of this paper, Table III itemizes the different
hardware employed for data acquisition in examined works
utilizing AI techniques. The hardware is categorized into eight
different types, as shown in the first column. In the second
column, the hardware names or models are listed. Some are
marked with “unknown” when the name is not mentioned in
the original work.

Fig 3 summarizes all the use-cases examined in our survey.
The features are depicted as “leaves” in a tree structure. Lines
of different colors represent different techniques. The use-
cases are described in keywords. If a line emerges from the
leaf with an open ending, this means that the application
only uses this feature as the input. Typically, the applications
use more than one feature, marked with connections in the
figure. The use-case is the nearest keyword above the line
(or on the right side of the line). From this overview, the
following is apparent for in-cabin use-cases: (1) important
input features are a driver’s eye and head movement, full
images of drivers/roads and vehicle position and dynamics; (2)
popular techniques are Machine Learning and Deep Learning;
(3) research focuses are distraction detection, HMI design, and
driver intention analysis.

Fig. 3 also includes features that are used in different
applications. For example, the image of the driver is used
widely in distraction and intention detection, as well as for
convenience purposes. For the future work, a high-level mod-
ule integrated with different functionalities will be considered.
This module should have a manager that can coordinate the
work of different sub-modules. In this way, the resource of
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the vehicle is saved and different modules can support one
another to achieve a holistic solution.
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Intention

[23]

Acoustic 
 signals

 Hand
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Fig. 3. Summary of concrete use-cases, their techniques and features.
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