
The Perception Engineer’s Toolkit for Eye-Tracking data analysis
Thomas C. Kübler

thomas.kuebler@uni-tuebingen.de
Wilhelm-Schickard Institut

Tübingen, Germany

Figure 1: Examplary sample-based gaze density map on Yarbus’ experiment while viewing "the unexpected visitor" by Repin.

ABSTRACT
Tools for eye-tracking data analysis are as of now either provided as
proprietary software by the eye-tracker manufacturer or published
by researchers under licenses that are problematic for some use-
cases (e.g., GPL3). This lead to repeated re-implementation of the
most basic building blocks, such as event filters, often resulting in
incomplete, incomparable and even erroneous implementations.

The Perception Engineer’s Toolkit is a collection of basic func-
tionality for eye-tracking data analysis under a friendly CC0 license
that allows for easy integration, modification and extension of the
codebase. Methods for data import from different formats, signal
pre-processing and quality checking as well as several event detec-
tion algorithms are included. The processed data can be visualized
as gaze density map or reduced to key metrics of the detected eye
movement events. It is programmed entirely in python utilizing
high performance matrix libraries and allows for easy scripting
access to batch-process large amounts of data.

The code is available at https://bitbucket.org/inserted_after_
blind_review

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Etra ’20, June 03–05, 2018, Stuttgart, GER
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-9999-9/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

CCS CONCEPTS
• Computer systems organization→ Embedded systems; Re-
dundancy; Robotics; • Networks→ Network reliability.

KEYWORDS
eye tracking, signal processing, event detection, data analysis

ACM Reference Format:
Thomas C. Kübler. 2020. The Perception Engineer’s Toolkit for Eye-Tracking
data analysis. In Etra ’20: ACM Symposium on Eye-Tracking Research and
Applications, June 03–05, 2020, Stuttgart, GER. ACM, New York, NY, USA,
4 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Analysis of eye-tracking data is not trivial and the selection of
suitable algorithms and parameters often depends on the recording
device and experimental settings. As an example, a plethora of
event detection algorithms exist (methods to separate individual
eye-tracker samples into fixations and saccadic eye movements)
and their applicability depends on the sampling speed of the eye-
tracker, the expected precision of the gaze signal, and other factors.
Therefore, most researchers choose to leave the task of algorithm
and parameter selection to the manufacturers of their recording
devices - and license expensive closed-source software together
with the purchase of their devices. There are solid arguments to
do so (reproducibility, reasonable default settings). On the other
hand, it is essential that the community of eye-tracking researchers
retains the ability to apply customized and novel methods as well as

https://bitbucket.org/inserted_after_blind_review
https://bitbucket.org/inserted_after_blind_review
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

Etra ’20, June 03–05, 2018, Stuttgart, GER Kübler

Table 1: Overview on eye-tracking data analysis software, its capabilities (Event detection, importing custom data formats,
recording data, visualization, scripting or command file interface and licensing). Various other tools that cover individual
aspects of these capabilities do exist.

Name Events Import Record Visual Script Interf. License
Tobii Studio IVT -

√ √ √
GUI / SDK Proprietary

D-Lab unspecified -
√ √

- GUI Proprietary
imotions unspecified

√ √ √
- GUI Proprietary

SMI BeGaze2 IVT, IDT -
√ √

- GUI Discontinued
EyeLink DataViewer IVT variant -

√ √
- GUI Proprietary

NYAN - -
√ √

- GUI / SDK Proprietary
OGAMA [15] IDT

√ √ √ √
GUI / C# GPL3

Eyetrace [12] IVT, IDT, GMM
√

-
√

- GUI / C++ unspecified
EyeMMV [10] 2-step Dispersion

√
-

√ √
MATLAB GPL3

GazeAlyze [2] IDT
√

-
√ √

MATLAB / GUI unspecified
ILAB [5] IDT

√
-

√ √
MATLAB / GUI unavailable

gazetools [7] IVT
√

- - - GNU R unspecified
Eye Movement Classification [9] IVT, IDT, IHMM, IMST, IKF

√
- - - MATLAB BSD

PyGaze [3] IDT variant
√ √ √

Python GPL3
Perception Engineer’s Toolkit IVT, IDT, HMM, GMM

√
-

√ √
Python CC0

the option to compare different approaches against each other and
to quantify the effect of different algorithm and parameter choices.
Therefore, it is essential to base the novel work on solid ground.

Curiously (and somewhat consequently) textbooks on eye-tracking
even contain chapters on how to compute event detection in an Ex-
cel sheet [6]. Also, derived data (such as fixations and saccades) are
common parts of eye-tracking data formats [17], even though they
could in theory be recalculated on demand anytime (even though
reaching the exact same results is surprisingly difficult in practice).
However, some of these very basic methods contain quite complex
implementation details (e.g., how does I-DT handle approaching
a gap in the data signal? Should the duration of a fixation include
half of a sample duration before and after the samples assigned to
the fixation?).

Asking for further extensibility in proprietary software is likely
not the way to go (as companies are not eager to maintain compat-
ibility with third party code and doing so might actually endanger
reproducible results generated with the own software).

Researchers on the other hand have created a variety of different
toolsets over the last years. Contrary to other disciplines, no gold
standard (such as OpenCV or tensorflow) has emerged. This is in
part also due to the licensing regulations chosen by researchers: Li-
censes such as GPL3 are difficult to handle for commercial use-cases
and therefore deemed to remain of academic use only. Probably
even worse to handle is software without proper licensing, often
resulting in no legal use being possible at all due to personal or
institutional copyright.

So, while companies offer well maintained and tested software,
researchers need to re-implement the same basic methods again
and again to reach a state where novel implementations can be
added.

This toolkit offers the ability to combine, modify and extend basic
building blocks in eye-tracking data analysis. Based upon these
ready-made components, one can rapidly implement advanced
analysis methods.

Through a strictly modular design, future components that might
depend on more restrictive licenses (e.g., LGPL) could easily be
enabled or dropped depending on the current use-case.

Naturally, eye-tracking data analysis software is based on a
graphical user interface (GUI) so that usage is simple and accessible
to most people. However, scripting interfaces such as command
line programs often provide better means of batch processing and
piping data. Imagine you just created a chain of processing steps
that works reasonably well on your data. Some months later, you
want to reapply the same processing to additional data and run the
exact same analysis again. While most software will enable you
to reconstruct the processing steps and parameters from a project
history or log files, it still involves pressing a lot of buttons and
manually adjusting parameters. With a scripting-enabled applica-
tion, one can simply re-run the pipeline with additional input data
without further adjustment. Similarly, imagine you want to apply
an event detection method to your data and to brute-force different
settings for, e.g., the I-DT dispersion threshold parameter. For GUI
applications that would usually mean a manual adjustment of the
parameter within the GUI, re-running event detection and manual
export of the results to post-process e.g. within MATLAB or python.
Within a scripting-enabled environment this boils down to a single
line of code that re-runs the pipeline with an increment parameter.

Over the last years scripting languages such as MATLAB and
Python have proven their power in the processing of large scale
experimental data as well as their relative ease of use also for non
computer scientists. With the Perception Engineer’s Toolkit we
present a computer scientists approach to eye-tracking data anal-
ysis software that aims at alleviating the problems with existing
software mentioned above by being scripting enabled by default,
licensed under CC0 as well as being modular with a clean API
interface.

The Perception Engineer’s Toolkit for Eye-Tracking data analysis Etra ’20, June 03–05, 2018, Stuttgart, GER

1.1 State of the art
A probably non-complete overview of existing toolsets is provided
in Table 1. Note that the extend to which the tools cover individual
aspects might be very different, e.g., Eyetrace offers a rich variety of
visualization methods while Pygaze focuses more on the recording
aspect with rather basic visualization capabilities.

Probably closest to the presented approach is the software Gaze-
Alyze [2], which also offers a pipeline from data import over event
detection up to the calculation of eye movement features. The tool
is based on MATLAB and can be configured via a command file.
However, no explicit license is provided and MATLAB is required
in order to run the tool.

2 METHODS
The toolbox is implemented entirely in python. High computational
performance is achieved by massive use of numpy[16] and Tabel1
libraries. Contrary to e.g. Pandas, Tabel allows to create views
(i.e., slices) of data matrices that guarantee no in-memory copy of
the data. As such an operation is very frequent for many signal
processing steps, this pays off in a significant run-time performance
improvement (as no time-intense copying of data in memory is
required). Besides this important implementation detail, it offers
easy data access similar to Excel or MATLAB matrices.

Each processing step is encapsulated in a Command structure.
A command is able to access one or more Datamodel objects that
are provided to it, each containing one eye-tracking trial. Com-
mands are able to read and modify these trials, e.g., to perform
steps such as filtering or event detection. They are grouped into
several categories that determine their responsibility, such as load-
ing and writing data from/to file, preprocessing, event detection, or
visualization. Each such responsibility is encapsulated as a plugin
interface. Individual plugins can be loaded through the lightweight
Yapsy plugin system2.

Commands can either be executed from a python shell (and as
such scripted) or pushed to a command stack via a command file
parser. The command file is an human-readable YAML file that can
easily be modified in a text editor. This file specifies the order in
which commands are stacked as well as their parametrization. An
example is shown in listing 1.

The whole toolbox is thoroughly documented and all parameters,
their units, defaults and reasoning behind them is contained in the
docstrings alongside the code.

3 CONTENT
The workflow usually starts with a data import from text-formatted
files. Presets for Tobii and SMI exports are provided. Other (custom)
formats are covered by a customizable importer that allows to adjust
the data separating character, the column names containing relevant
data, a comment symbol, number of header lines, and many more
parameters. Import and export of hdf5 data is also implemented,
but requires a certain internal file layout.

Signal processing workflows include quality checking the track-
ing ratio as well as a visualization of tracking quality per trial (see
Figure 2). Such a visualization can be extremely helpful as one can
1https://github.com/BastiaanBergman/tabel
2http://yapsy.sourceforge.net/

Figure 2: Data quality visualization of twelve trials (one
per row) of different length. Green parts indicate valid data
while red parts visualize data segments with invalid sam-
ples. In these trials tracking loss is interspersed and overall
quality is high, as opposed to trials where tracking might
get completely lost at some point during the trial and not
recover.

easily check whether trial lengths are similar. While for trials of
few seconds duration the total tracking rate (i.e., the ratio of valid
samples in the data) is a good measure of data quality and a trial
exclusion criteria, this does not hold for very long recordings (e.g.,
an hour of driving), where overall bad tracking performance has to
be distinguished from temporary tracking losses (e.g., because of
driving against the sun). Moving average and Median filter of the
gaze X- and Y-coordinates as well as filling short tracking losses
via linear interpolation are also implemented.

Listing 1: Command file in YAML format that defines the
workflow and parameters of used algorithms. This file loads
Tobii’s exported data and performs event detection. Non-
specified parameters (such as filter lengths) are reasonably
defaulted.
Commandlist .YAML
− { plugin : "PersistenceCSV" , a c t i o n : "read" ,

parameters : { f i l e n ame : "data.txt" ,
separator : "\t" ,
timestamp_to_ms_factor : 0 . 0 0 1 ,
a l i a s e s : {

"Time": "Time" ,
"X": "L␣POR␣X␣[px]" ,
"Y": "L␣POR␣Y␣[px]" }

}
}

− { plugin : "PreprocessGapFill" ,
parameters : { max_gap_length : 7 0 } }

− { plugin : "PreprocessMedianFilter" }
− { plugin : "EventdetectionIHMM" }
Event detection can be performed either via I-DT, I-VT [13],

using HMMs with Gaussian emission [13] or Gaussian Mixture
Models [14]. See [1, 8] for a review on which method to use when.

Based on the detected eye movements, characteristic measures
can be computed: for fixations the count, rate, average duration,
dispersion standard deviation and ranges are reported. For saccades
the count, rate, average duration, HV-ratio, average amplitude,
velocity, peak velocity and time to peak.

There is also an experimental (not thoroughly tested) implemen-
tation for microsaccade detection [4] and scanpath comparison

https://github.com/BastiaanBergman/tabel
http://yapsy.sourceforge.net/

Etra ’20, June 03–05, 2018, Stuttgart, GER Kübler

Figure 3: Visualization of saccade direction frequencies in
eight angular bins.

using subsequence frequencies [11] as well as a novel approach to
mine for relevant patterns via a genetic evolutionary algorithm.

Further, gaze density maps based on samples, fixation count
and fixation duration can be created via superposition of Gaussian
probability density functions and visualized as either heatmaps or
shadowmaps (shown in Figure 1). The major saccade transition
directions can be visualized in a polar plot via aggregation over
angular bins (Figure 3).

Overall, the Perception Engineer’s Toolkit is a versatile set of ba-
sic signal processing building blocks specific for the post-experimental
analysis of eye-tracking recordings. Typical analyses that commer-
cial software provides can be reproduced. Furthermore, it offers
scripting access, e.g., to enable studying of the influence of parame-
ter choices.

ACKNOWLEDGMENTS
REFERENCES
[1] Richard Andersson, Linnea Larsson, Kenneth Holmqvist, Martin Stridh, and

Marcus Nyström. 2017. One algorithm to rule them all? An evaluation and
discussion of ten eye movement event-detection algorithms. Behavior research
methods 49, 2 (2017), 616–637.

[2] Christoph Berger, Martin Winkels, Alexander Lischke, and Jacqueline Höppner.
2012. GazeAlyze: a MATLAB toolbox for the analysis of eye movement data.
Behavior Research Methods 44, 2 (01 Jun 2012), 404–419. https://doi.org/10.3758/
s13428-011-0149-x

[3] Edwin S Dalmaijer, Sebastiaan Mathôt, and Stefan Van der Stigchel. 2014. PyGaze:
An open-source, cross-platform toolbox for minimal-effort programming of eye-
tracking experiments. Behavior research methods 46, 4 (2014), 913–921.

[4] Ralf Engbert and Reinhold Kliegl. 2003. Microsaccades uncover the orientation
of covert attention. Vision research 43, 9 (2003), 1035–1045.

[5] Darren R Gitelman. 2002. ILAB: a program for postexperimental eye movement
analysis. Behavior Research Methods, Instruments, & Computers 34, 4 (2002),
605–612.

[6] Prof Kenneth Holmqvist and Dr Richard Andersson. 2017. Eye Tracking - A Com-
prehensive Guide to Methods, Paradigms, and Measures (2. aufl. ed.). CreateSpace
Independent Publishing Platform, Ort.

[7] RMHope. 2014. Gazetools: a collection of functions for processing and classifying
eye gaze data.

[8] Oleg V Komogortsev, Denise V Gobert, Sampath Jayarathna, Sandeep M Gowda,
et al. 2010. Standardization of automated analyses of oculomotor fixation and
saccadic behaviors. IEEE Transactions on Biomedical Engineering 57, 11 (2010),
2635–2645.

[9] Oleg V Komogortsev and Alex Karpov. 2013. Automated classification and scoring
of smooth pursuit eye movements in the presence of fixations and saccades.
Behavior research methods 45, 1 (2013), 203–215.

[10] Vassilios Krassanakis, Vassiliki Filippakopoulou, and Byron Nakos. 2014. Eye-
MMV toolbox: An eye movement post-analysis tool based on a two-step spatial
dispersion threshold for fixation identification. Journal of Eye Movement Research
7, 1 (Mar. 2014). https://doi.org/10.16910/jemr.7.1.1

[11] Thomas C Kübler, Colleen Rothe, Ulrich Schiefer, Wolfgang Rosenstiel, and
Enkelejda Kasneci. 2017. SubsMatch 2.0: Scanpath comparison and classification
based on subsequence frequencies. Behavior research methods 49, 3 (2017), 1048–
1064.

[12] Thomas C Kübler, Katrin Sippel, Wolfgang Fuhl, Guilherme Schievelbein, Johanna
Aufreiter, Raphael Rosenberg, Wolfgang Rosenstiel, and Enkelejda Kasneci. 2015.
Analysis of eye movements with Eyetrace. In International Joint Conference on
Biomedical Engineering Systems and Technologies. Springer, 458–471.

[13] Dario D Salvucci and Joseph H Goldberg. 2000. Identifying fixations and saccades
in eye-tracking protocols. In Proceedings of the 2000 symposium on Eye tracking
research & applications. 71–78.

[14] T. Santini, W. Fuhl, T. C. Kübler, and E. Kasneci. 2016. Bayesian Identification of
Fixations, Saccades, and Smooth Pursuits. In Proceedings of the Ninth Biennial
ACM Symposium on Eye Tracking Research & Applications (ETRA). 163–170.

[15] Adrian Voßkühler, Volkhard Nordmeier, Lars Kuchinke, and Arthur M Jacobs.
2008. OGAMA (Open Gaze and Mouse Analyzer): open-source software designed
to analyze eye and mouse movements in slideshow study designs. Behavior
research methods 40, 4 (2008), 1150–1162.

[16] Stéfan van der Walt, S Chris Colbert, and Gael Varoquaux. 2011. The NumPy
array: a structure for efficient numerical computation. Computing in Science &
Engineering 13, 2 (2011), 22–30.

[17] Stefan Winkler, Florian M Savoy, and Ramanathan Subramanian. 2014. X-Eye: A
reference format for eye tracking data to facilitate analyses across databases. In
Human Vision and Electronic Imaging XIX, Vol. 9014. International Society for
Optics and Photonics, 90140L.

.

https://doi.org/10.3758/s13428-011-0149-x
https://doi.org/10.3758/s13428-011-0149-x
https://doi.org/10.16910/jemr.7.1.1

	Abstract
	1 Introduction
	1.1 State of the art

	2 Methods
	3 Content
	Acknowledgments
	References

