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Summary

Expert medical professionals must visually examine medical images (MRI and
CT scans, radiographs, ultrasounds etc.) with the utmost concern for a patient’s
health. Developing the perceptual abilities to distinguish an atypical shadow from
an anatomical structure involves considerable training and time. Although stu-
dents view a multitude of these images in their studies, often, they must receive
further supervision upon entering their residencies or even early on in their careers.
This current approach can exhaust expert resources allocated for supervision and
leaves room for error.

This thesis sets out to investigate the gaze behavior as an effective tool for expert
and novice anomaly recognition, specifically in the context of dental image inspec-
tion (Technical term: orthopantomograms, or OPTs). Our ability to go deeper
into the predictive aspect of scanpath analysis makes our research truly innova-
tive. Much of the current literature regarding experts and novices has found that
domain specific tasks evoke different eye movements. However, research has yet
to predict these behaviors and guide students towards expert behavior strategies.
More important, advanced pattern recognition and analysis algorithms have not
yet been employed to identify and quantify differences in the visual search strat-
egy between advanced learners, residents, and expert practitioners.

The potential to integrate expertise model development from scanpath features
into intelligent tutoring systems is the ultimate inspiration for our research. This
novel approach to training dentistry students with gaze-based learning environ-
ments can offer insight into the training of students in other medical domains.
Currently, the training of OPT interpretation in dental students exhibits a deficit of
systematic learning approaches and can vary between universities. Moreover, there
are no known user-aware intervention techniques that address the improvement
of image reading performance in students or advanced learners.

By employing machine learning-based scanpath classification, we found features
in the gaze indicative of expertise and expert cognitive processes. We were also
able to distinguish gaze behavior related to a student’s level of understanding. The
culmination of these findings provide support for a robust classification algorithm
we developed to extract semantic features of the gaze and cluster experts and
novices based on feature similarities in the scanpath with high accuracy.
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Zusammenfassung

Diagnoseprozesse in der Medizin basieren zunehmend auf bildgebenden Verfahren,
wie z.B. Magnetresonanztomographie, Computertomographie, Röntgenaufnahmen
oder Ultraschall. Effiziente Entwicklung von Interpretationskompetenz, um bei-
spielweise einen atypischen Schatten von einer anatomischen Struktur zu unter-
scheiden, erfordert umfangreiches Training und viel Zeit. Obwohl Studierende
während ihrer Ausbilung eine Vielzahl solcher Bilder betrachten und zu inter-
pretieren lernen, müssen sie beim Eintritt in die Berufspraxis von Experten weit-
erbetreut werden. Dieser derzeit gängige Ansatz kann jedoch Expertenressourcen
für die Betreuung erschöpfen und lässt Raum für Diagnosefehler.

Aktuelle Literatur über die Manifestation von Expertise bei Studien mit medi-
zinischen Experten und Studierenden berichtet von unterschiedlichen und domä-
nenspezifischen Augenbewegungen. Obwohl die zugrundeliegenden Verhaltens-
weisen noch nicht abschließend geklärt sind, könnten durch datengetriebene Anal-
yseverfahren und Mustererkennungsalgorithmen erfolgreiche Suchstrategien iden-
tifiziert und quantifiziert werden.

In dieser Arbeit untersucht daher zunächst das Blickverhalten als wirksames In-
strument Feststellung medizinischer Expertise, insbesondere im Zusammenhang
mit der zahnärztlichen Bildinspektion (Fachbegriff: Orthopantomogramme oder
OPGs, engl.: OPTs). Gegenwärtig variieren Ausbildungsverfahren in den Zahn-
medizin Studiengängen hinsichtlich der Interpretation von OPTs von Universität
zu Universität. Es mangelt an systematischen Lernansätzen. Wichtiger noch, es
sind keine auf Nutzerverhalten basierenden Interventionstechniken bekannt, die
sich mit der Verbesserung der Leistung von Studierenden oder gar Fortgeschritte-
nen befassen.

Durch den Einsatz der auf maschinellem Lernen basierenden Klassifikation vi-
sueller Suchpfade (sog. Scanpaths) konnten im Rahmen dieser Arbeit Merkmale
im Blickverhalten, die auf Fachwissen und Expertise hinweisen, identifiziert wer-
den. Basierend auf diesen Ergebnissen wurde ein robuster Klassifikationsalgo-
rithmus entwickelt, um anhand von semantischen Blickbewegungsmerkmalen Ex-
perten und Novizen mit hoher Genauigkeit zu kennen.

Diese Forschung stellt eine wichtige Basis für die Entwicklung von Experten-
modellen aus Scanpath-Features dar und dient letztlich der Integration in intel-
ligente Tutoring-Systeme. Dieser Ansatz bietet potential für Ausbildung mithilfe
blickbasierter Lernumgebungen kann nicht nur über den zahnmedizinischen An-
wendungsbereich hinaus Erkenntnisse für die personalisierte Ausbildung von Stu-
dierenden in anderen medizinischen Bereichen geben, sondern auch Hinweise zur
Optimierung von automatisierten Entscheidungsunterstützungssystemen liefern.
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Scienti�c Contribution

This work promotes the use of gaze as a distinguishing feature in expert and novice
recognition in the context of medical image inspection. Six scientific publications
from 2018 to 2020 support gaze behavior related to expert and novice decision
making as well as scanpath classification, and are each detailed in chapter 5. In
addition to these publications, the thesis author has 7 additional scientific publica-
tions that contribute to fundamental aspects in eye tracking data analysis. Three
of these publications are method-based contributions to state of the art scanpath
analysis and are detailed in chapter 3.

3





2 Introduction

We are all experts in our own

little niches

�Alex Trebek

The focus of this work is eye movements as a feature for expertise distinction.
Specifically, how to use gaze to measure expertise and its development from a
data driven perspective. This thesis will start with a brief overview of expertise
research in section 2.1. Although for a more comprehensive investigation of exper-
tise from the psychological and educational perspective, the author recommends
The Cambridge Handbook of Expertise and Expert Performance [14]. The following
sections in this chapter will also provide an overview of eye movement behav-
ior (section 2.2), specifically how these movements relate to expertise and expert
visual search (section 2.3), and how these gaze features can be a guiding mecha-
nism in the educational context (section 2.4). Chapter 3 provides an overview of
the state of the art in scanpath analysis, with a deeper investigation into medical
expert recognition (section 3.5). Following these overviews, chapter 4 lays out the
current objectives of this thesis, while the major findings are discussed in detail in
chapter 5. Chapter 6 concludes with the outlook and further implications of this
research.

2.1 A brief overview of expertise, its development,

and the visual aspects

Experts are renowned for their abilities. Many novices work towards becoming
experts. While the actual development of expertise is highly examined, the simple
question often remains: How does one really become an expert? Ten years1 or
10,000 hours2 of practicing a trade are the common colloquial suggestions. Indeed,
developing the knowledge and the skill set to be an expert takes time, but many
factors are involved to make one truly stand out as an expert in their field.

Someone is classified as an expert if they “ ... are recognized within their pro-
fession as having the necessary skills and abilities to perform at the highest level”
according to Shanteau [17, p. 255], i.e. judged on exceptional performance [18]–
[20]. It is evident that experts perform faster and more accurately than their novice

1First suggested by Bryan and Harter in 1899 [15].
2First suggested by Chase and Simon in 1973 [16].
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counterparts in domain-specific tasks [19], [21]–[25]. Compared to novices, ex-
pert chess players can determine a winning strategy more quickly [16], [26], [27],
expert radiologists can more rapidly recognize anomalies [28]–[31], and expert
athletes score more points in a competition [32]–[35]. Peers, researchers, and lay-
men recognize this superior performance, but the underlying mechanics are not
as easily perceived. The actions – cognitive and procedural – that dictate success
need to be understood as well.

Other definitions of expertise attempt to explain superior performance by focus-
ing on the inner cognitive features, where intuition, effortlessness, and optimal
use of minimal resources are essential [21], [36]–[38]. Naturally, a cognitive
model is harder to evaluate than a tangible metric such as performance. Some
techniques that make the cognitive process apparent are self-reports, think aloud
protocols [39]–[41], and testing memory and recall [16], [42], [43]. For example,
due to effective recall, experts can view a radiograph for just a few milliseconds
and tell if there was an anomaly present with extremely high accuracy [44], [45].

The differences between experts and novices are attributed to more structured
cognitive approaches employed by experts, whereas novices lack the knowledge
and practice [24], [29], [46]. Then, as expertise develops, so does the cognitive
ability, which affects fluency in operations, resistance to distraction, and dual-task
ability [47]. For example, expert microsurgeons have more stable hand move-
ments during surgical microscopy procedures compared to novices [48], [49].
Moreover, expert cognitive ability facilitates focus on relevant features for a co-
hesive decision (see example in figure 2.1). The extent of an expert’s focus is
manifested in their visual behavior, and many expert domains rely on effective
visual processing [24].

Figure 2.1: Examples of findings that possibly indicate calcification of the carotid
arteria (diagonal arrows). Novices may focus on non-relevant fea-
tures, i.e. the dental status and the setting of the teeth within the bone.
An expert observer might be interested in the situation of the canalis
mandibularis for anaesthesia or implantology reasons (down pointing
orange arrow). However, findings such as this calcification are often
overlooked.

Experts look at their work differently than novices or laymen. They also perceive
differently than novices [50]–[52], e.g. expert radiologists are more sensitive to
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low contrast features in radiographs. Perceptual expertise is an inherent quality
in many medical professionals. Their extensive training results in fast recognition
and decision making with high sensitivity and specificity. Often, medical experts
tackle complicated situations – e.g. cases, operations, diagnoses – where recogniz-
ing the best solution is a challenge. One area prone to error is radiological image
interpretation [53]–[56]. For instance, statistics on diagnostic error show 10-30 %
of overlooked breast cancer recognition in mammograms [57] and 45-50 % of er-
rors in lesion and nodule detection in chest radiographs [58], [59] (See [55], [60]
for further statistics on diagnostic error).

Radiographs are highly prevalent in dental medicine [61]–[66]. Orthopanto-
mographs – or panoramic radiographs (OPTs) – are complex projections of the
maxillomandibular region on a single film. OPTs include the entire dentition, alve-
olar bone, temporomandibular joints as well as adjacent structures such as maxil-
lary sinus, hyoid, styloid processes, vertebral bodies, and even soft tissues of the
head and neck (esp. arteries and adenoids) [67] (see left figure 2.1 for exam-
ple). Detection of certain anomalies (e.g. caries on the molars) is often harder
in OPTs compared to other dental radiographs that capture only a portion of the
teeth [68]–[71]. Under detection and misdiagnosis for other anomalies (e.g. pe-
riapical lesions) can be as high as 20 % [72], [73]. OPTs are also more prone to
technological errors (e.g. positional errors, exposure/contrast issues) [64], [66],
[74]. However, given the complicated nature of OPTs and radiographs in general,
experts still outperform their novice counterparts [53], [75], [76].

An expert’s visual search strategy offers insight into his or her thought processes,
which provides a new means for teaching and improving expertise. The end goal
of understanding expert cognition has always been to measure progress [46]. Ex-
pert gaze models can augment the well-known mantra of practice makes perfect by
bringing the focus to relevant components in a task. Assessing progress, however,
is twofold: Providing an expert model and recognizing a novice’s understanding of
it. Therefore, gaze-based intelligent tutoring systems can bring together traditional
targeted practice and user-awareness. In order to work successfully, these systems
need to both evaluate gaze behavior automatically and detect strategic patterns
from that behavior. Thus, expertise recognition through scanpath analysis is a cru-
cial step toward gaze-based training. Robust recognition of a student’s level of
understanding through gaze can provide the appropriate level of content. This so-
lution has the ability to smooth the transition between residency and professional
environments for students by minimizing the knowledge gap. More important, hu-
man expert resources, often allocated to time-consuming training efforts, are freed
up for actual work.

2.2 Fundamentals of eye movements

Types of eye movements Eye movements offer insight into how we perceive
the world. The eyes move to accommodate the vast wealth of information, since
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Figure 2.2: An example of the visual field, with foveal (our sharpest) vision less
than 2° and para-foveal vision around 2-5°. At a viewing distance of
60cm to a 17�1920 × 1080 pixel monitor, 100 pixels is approximately
1.82° of our visual field.

the sharpest vision – from the fovea on our retina – is less than 2° (illustrated in
figure 2.2 in yellow) of the visual field [77]–[80]. With increasing eccentricity
from foveal vision, visual acuity decreases [81]. At roughly 2 - 5° eccentricity is
para-foveal vision (illustrated in figure 2.2 in pink), where simple features (e.g.
orientation, shape, texture) can be recognized without high acuity [82], [83]. The
remaining visual field is the periphery, with the lowest visual acuity and with the
least color sensitivity [78], [80], [81], [84]. Additionally, we have a blind spot (ap-
prox. 10 - 15°) where the optic nerve originates at the retina, which corresponds
to the nasal part in our field of view [78]. If we take the example in figure 2.2 of
a dentist inspecting an OPT sitting approximately 60cm away from a 17�monitor
with 1920 × 1080 pixel dimension, foveal vision (shown in yellow) would be less
than 110 pixels. This area does not include a whole tooth. The rest of the visual
input would appear blurred, and in para-foveal vision (approximately within 275
pixels), only the tooth outline and a neighboring tooth is distinguishable. Consid-
ering a radiograph’s grayscale format and potential for technical errors, the idea
of accurately detecting an anomaly based on a small window for sharp feature
recognition becomes hard to fathom for a naive viewer.

Since nearly half the visual information sent to our brain comes from the fovea,
the eyes move to encompass 170° vertical and 200° horizontal of the visual field
[77]–[79]. Fixations occur when the eye remains relatively stable to perceive avail-
able visual information. More information can influence the duration of the fixa-
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2.2 Fundamentals of eye movements

(a) Original image. (b) The salient features. (c) Given the task: “Find
the cat”.

Figure 2.3: Visual processing styles of the The overturned Bouquet painting by
Abraham Mignon (1660-1679), oil on canvas. public domain https:

//commons.wikimedia.org/wiki/.

tion [80], [85], [86].3 Saccades are the rapid eye movements to a new area,
occurring between fixations. They can occur at velocities of 30 to 500°/s and
our brains do not process the visual intake during this movement [80]. Thresh-
olds for fixation/saccade detection can be temporal and dispersion- or velocity-
based [85]. Recently, event detection approaches that are Bayesian [87]–[90] or
machine learning-based, such as the approaches by Fuhl, Castner et al. [8], [9]
can recognize task dependent events. Other eye movements such as microsac-
cades, smooth pursuits, glissades, vestibular-ocular reflex, etc. are not the focus to
this work, though for additional details the reader should see Holmqvist et al. [80].

Eye movements linked to attention and processing Eye movements allude to
key aspects in perception, with fixations providing the most basic unit for under-
standing visual attention [79], [91], [92]. Attention is organized by two inter-
twined processes. Bottom-up processing is linked to salient features that exoge-
nously catch our initial attention. For example, the painting in figure 2.3a has
bright flowers that pop out against a shadowed background. Saliency-models,
based on this processing style, dictate that color and contrast features (e.g. fig-
ure 2.3b) would be the first to capture our attention [93], [94]. This model of
attention processing is biologically based, but lacks higher cognitive processes that
are context dependent [94], [95]. It is argued that in visual search, early fixa-
tions may be more bottom-up inclined, but through the course of the search task
demands influence the gaze pattern to a greater extent [95], [96].

When medical professionals inspect a radiograph, their expertise helps them
know what to look for. This context-dependent gaze behavior is the main feature

3In general, there are other ways to define these eye movements that account for the type of task
(i.e. fixations respective to areas or moving objects in the ego-perspective), but the current work
follows these simple definitions.
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of visual search, i.e. “Can we rule out cancer?” or, in the case of figure 2.3c, “find
the cat”. This type of attentional processing is top-down, which can be knowledge
or task dependent [95]. The pioneering works of Buswell [97] and Yarbus [98]
found that gaze behavior adapts to differing context or task. This corresponding
gaze to task behavior is known as the scanpath. Scanpaths during visual search
show a relationship between saccade and fixation behavior, and adapt to changes
in search strategy [86], [95], [96], [99], [100].

Pupillary response in visual processing Not only are eye movements indica-
tive of how we process visual information, but the pupillary response can indicate
cognitive processing. A greater dilation change from a baseline measurement can
alludes to the requirement of more mental resources – or cognitive load – during
the task [101]–[112]. Task difficulty as well as uncertainty affect cognitive load,
where pupil diameter increases in visual search tasks when targets are hard to
find [23], [113]–[116].

Due to these aspects, cognitive load has become a staple in evaluating learn-
ing environments for students [117]. Pupil diameter has shown to decrease with
learning [107], [118]. Students may not be exposed to difficult tasks, but accumu-
late more experiences overtime, which can reduce cognitive load. Furthermore,
pupillary response serves as a way to further distinguish the cognitive processes
of experts and novices. For instance, experts show smaller pupillary response to
domain tasks than novices [110], [119], [120]. However, even experts exhibit
cognitive load when tasks become more difficult [108], [121]. One contribution
of the current work (detailed in section 5.2) furthers this research by coupling
expert pupillary response and fixations on relevant anomalies, whereas previous
research has handled these components separately.

2.3 Expertise and eye movements: State of the art

Tracking a subject’s eye movements has become increasingly pervasive over the
past twenty years [122]–[125]. Before, eye tracking was highly constrained to a
lab – and even invasive at times. Now eye trackers can unobtrusively measure be-
havior in naturalistic settings. Research in the 1950s was first starting to recognize
the expert gaze in sports [126] and aviation [127]. Since then it has spread to jug-
gling [128], sailing [129], forgery detection [130], and organic chemistry [131],
to name only a few. This overview is confined to medical expertise, with a stronger
focus on medical image inspection. However, for a more comprehensive overview,
the author refers the reader to Gegenfurtner et al. [24] and Brahms et al. [132].

Expertise differences in eye movement behavior can be explained against the
backdrop of three theories. (1) Long-Term Working memory [37] justifies how ex-
perts have consolidated memory structures that allow for fast extraction of areas
of importance and rapid analysis of these areas. (2) Information-reduction hypothe-
sis [133] similarly indicates that experts are more attuned to relevant areas for the
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problem at hand, and they effectively ignore irrelevant areas. (3) Holistic image
processing [134] states that experts first rapidly obtain a global impression of the
problem, by quick scanning of the whole, then they hone into areas, that require
deeper investigation.

2.3.1 Expert �xation and saccades

The aforementioned theories all regard the rapid and accurate ability of experts
to process task specific visual information [24]. The fact that average fixation
duration during a task is shorter for experts than it is for novices further supports
this assertion [24], [28], [56], [135]. For chest X-ray inspection, however, there
is no difference in the overall fixation duration [28], [136], [137], though experts
can still detect anomalies faster. This behavior could imply that other factors in
medical image interpretation play a role.

Although the fixation count between experts and novices, in general, is similar,
expert radiograph inspection is characterized by fewer fixations. Naturally, if an
expert is faster at inspecting an image, less fixations occur as a result of less time
spent on the task.

More interesting to expertise understanding is how they extract relevant infor-
mation. Experts appear to form a global representation of the whole image at a
glance [138]. They generally have a shorter time to first fixation on areas that are
relevant to the task than novices, i.e. an anomaly in a radiograph [28], [30], [132],
[134], [139]–[142]. This suggests that their experience and knowledge provides
shortcuts that are more sophisticated than novice comprehension. Experts also
have more fixations and of longer durations on relevant areas and less fixations
and of shorter durations on irrelevant areas than novices [24], [132]. This can be
attributed to reducing extraneous processing demands, i.e. cognitive load [133],
[143], [144]. For example, in laparoscopic surgery, experts have more fixations on
target locations than on the surgical tools being used, whereas novices shift their
gaze more often between tools and target locations [145]–[148].

Specifically for medical image interpretation, image content has a significant
impact on expert eye movements [24], [28], [137], [149]. Obvious and easy to
spot anomalies do not require as many fixations for experts than harder to detect
anomalies [28], [150], [151]. In mammograms, dental CTs, and OPTs, experts
have less fixations for more obvious anomalies compared to novices, but have more
fixations than novices for more subtle anomalies [149], [152], [153]. Conversely,
in a periapical radiograph inspection study with a combined subject pool of experts
and novices, first fixations and area revisits were highly affected by the image
content, e.g. cavities or restorations [154]. This finding suggests that more obvious
anomalies also direct initial attention and need further investigation, though it is
unclear the extent to which expertise affects this behavior.

Generally, the literature has provided a clear picture of an expert novice distinc-
tion in overall fixation behavior. However, this distinction in the saccade behavior
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is less apparent. Experts exhibit overall longer saccades [24], [28], [135], [136],
[155].4 Although one study found saccade velocities were lower for experts com-
pared to novices and decreased as a result of increased years experience [156].
Concerning the number of saccades, experts need less saccades than novices to in-
spect chest x-rays as well as angiograms [56], [157]. Similar to fixation behavior,
the image content has an effect on the saccades. For instance, experts performed
larger saccades than novices to detect lung nodules or chest lesions in chest x-
rays [137], [155], [158] and in slide microscopy [156], but shorter saccades to
detect visceral abnormalities and enlarged lymph nodes in CT scans [136]. In
contrast, experts had fewer saccades than novices when inspecting pathological
OPTs regardless of difficultly, but this difference was not found when inspecting
non-pathological OPTs [149].

Although research appears to have an extensive understanding of the differ-
ences between expert and novice eye movements, these summaries are still quite
limited. One considerable limitation is the sample sizes investigated. The review
by Gegenfurtner et al. [24] evaluated 73 sources and points out that the major-
ity of these studies evaluate five, maybe ten experts. In general, experts are hard
to acquire; they have busy schedules, and must devote resources to their profes-
sional domains. Additionally, there is always the concern that the investigated
task [24], [159] or even the expert’s own motivation will affect validity. Thus,
one expert who does not take the task seriously can heavily affect the outcome
of the research. Another limitation is the under-representation of intermediate
eye movements [24], [28]. This information regarding the in-between stages can
also be crucial in understanding student proficiency and developing appropriate
learning interventions. In the present work these limitations are addressed by (1)
investigating an extensive subject pool of students ranging from introductory to
advanced in addition to multiple dental professionals and (2) distinguishing scan-
path differences between the levels of students using state of the art classifications
algorithms. The respective details can be found in sections 4.1 and 5.4.

2.3.2 State of the art in visual search strategy

Experts have shorter search times when inspecting medical images compared to
novices [28], [65], [132], [137], [140], [142], [155], [158]. Additionally, they
employ similar search strategies, such as a global-to-focal order, supporting the
holistic processing theory [28], [56], [134], [137], [160]. Meaning, experts scan
the outer periphery and central areas, then hone in on areas needing more scrutiny.
This behavior has also been linked to effective visual search in general [96].5 It is
initialized with a period of long saccades and short fixations to get the gist [86].
Then, fixations become longer whereas saccadic amplitudes decrease when certain

4Either reported as saccadic amplitude in degrees, or length respective to image dimensions in
pixels.

5Known in other literature areas as ambient scene processing [161].
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Figure 2.4: Differences in gaze behavior of the first 18 seconds of visual inspection
of a panoramic radiograph. The gaze pattern in blue is from one of the
expert dentists involved in the project and the gaze pattern in orange
is from an incoming dental student (sixth semester).

features are further investigated [96].
Novices, on the other hand, tend to exhibit primarily focal search behavior [162].

They attend to more central and salient regions as exemplified by shorter saccade
lengths and longer and more frequent fixations [28], [56], [137], [163]. This con-
trast in expert and novice search strategies is illustrated in figure 2.4. The expert
scanpath – in blue – shows long saccadic sweeps of the peripheral structures before
inspecting a certain region with multiple fixations, whereas the novice scanpath –
in orange – appears to jump from tooth to tooth.

These search differences can be attributed to experts being more goal-driven,
and novices being more stimulus-driven due to inexperience [156], [164], [165].
However, there are some cases where experts can also be saliency-driven, e.g. brain
CTs, which creates a focal-then-global search strategy [166]. Thus, the spatial pat-
tern of an expert search can reflect the specialty. Experts prefer circular patterns
for mammograms [134], [139], though spiraling out for hand x-rays [167], or
drilling downwards in 3D chest CTs [168], [169](See [56], [162], [165] for fur-
ther descriptions of the search patterns during medical image inspection).

Specifically for dental radiographs, tooth-by-tooth and circular search strategies
were preferred depending on the nature of anomalies present in periapical pro-
jections [154]. However for OPTs, it was found that more experienced clinicians
employed more systematic scanning over less image areas for OPTs. Their less
experienced counterparts covered more areas, but overall showed less of a clear
scanning strategy. The main strategies they employed were spiraling inward (pe-
riphery areas first, then dental areas) and circular (going back and forth between
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central and periphery) techniques [65]. These studies are only starting to suggest
that gaze behavior in dental medical image interpretation is worth further investi-
gation, branching away from generalizing gaze behavior over all medical images.

Not only can visual search patterns indicate expertise, it can also allude to the
decision making process. Kundel et al. [58] recognized three types of diagnostic
errors that were evident in the gaze. For instance, a search error was apparent
when no fixations were on an anomaly. This was generally exhibited more so by
novices [29], [56], [170]. Recognition errors are evident when there are a few
fixations on an anomaly though it is not properly detected as such. Then, decision
errors are evident when there are multiple fixations on an anomaly and, ultimately,
it is still detected as a false negative. This type of fixation behavior has also been
linked to uncertainty in medical diagnoses, e.g. the expert is unsure which patholo-
gies to rule out [171]. To further understand experts’ fixation patterns in relation
to diagnostic decision making, the current work investigated glance frequencies
for recognized and overlooked anomalies. The details for this work can be found
in section 5.1.

2.4 Expert models for learning

Research in the field of expertise sets out to understand how factors contribute
to expertise in order to improve teaching novices. The current training strategy
is based on students analyzing and interpreting large quantities of cases that rep-
resent variations of normality and abnormality [29]. Evidence supports that this
"massed practice" improves perceptual sensitivity [50], [172]. However, more re-
fined training procedures are still scarce. Even though it has been available for
decades, eye tracking has yet to deliver the promises for adaptive training.

One approach towards gaze-based training that has become more prominent
is presenting a gaze model. In the educational literature, simply instructing sys-
tematic search effectively improves features of students’ gaze behavior (e.g. im-
age coverage, strategy), but not performance [158], [173], [174]. Building off
this concept, showing an expert model (i.e. a scanpath illustration or dynamic
representation it) improves performance, but only when coupled with expert in-
struction [174]–[176]. Similar findings were found concerning OPT inspection
in Eder,...,Castner et al. [7]. They presented students with heatmaps modeling
the gaze behavior of other students as well as a student’s own gaze. Students
were asked to compare their own gaze to that of the peer model. This instruction
was found to improve image coverage and draw more attention to low-prevalent
anomalies, which are generally harder for novices to recognize. Although anomaly
detection did not improve, this approach promotes investigation into guiding at-
tention towards features for training perceptual sensitivity. The current work fol-
lows up on this concept by developing an attention-aware adaptive gaze feedback,
which is detailed in section 5.6.
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Current gaze-based training of students can lack expert intention when direct-
ing a student’s attention to certain regions rich in semantics. One effort towards
smarter interaction with training systems is automated scanpath analysis, which
aims at revealing intentions of the task. This information relies on expert inten-
tion recognition and effective extraction of semantics: Specifically, visual search
and interpretation of radiographs for this work. However, in order to apply the
scanpath information to subject prediction that is not constrained to one image,
conventional approaches (described in chapter 3) are not feasible. Herein lies the
necessity of the current work’s contribution to scanpath classification using deep
learning to extract semantic features (see section 5.5).
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Figure 3.1: Broad overview of scanpath taxonomy over the last 33 years. 72 meth-
ods proposed and employed that deal with the scanpath as a temporal
sequence of information are the input for this taxonomy and referenced
in this chapter.

The literature of expert eye movement behavior involves high level abstraction:
i.e. assuming complex cognitive processes from simple metrics such as fixation
duration and saccade length. However, the scanpath differences can offer even
further insight into the complex strategies that expert performance exhibits. At its
core, scanpath comparison determines how similar one scanpath is to another. Al-
ready, figure 2.4 illustrates that there are two distinct scanpaths just from the spa-
tial representation alone. Comparison can then extend to encompass more features
to create a temporal, procedural, and even semantic understanding. Comparing
multiple scanpaths can lead to groupings based on sequence similarity, patterns,
etc. Scanpath classification then predicts which group a scanpath belongs to based
on the learned patterns attributed to specific groups. The benefit of classification
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(a) Gridded AOIs of varying granularity (b) AOIs segmented based on attention

Figure 3.2: AOI Types that are representative of spatial (left) of attentional (right).

is that models can be developed for online recognition [88], [89], [177], [178],
i.e. novice level recognition to present the appropriate learning intervention.

Figure 3.1 illustrates the common approaches to scanpath analysis as comprised
of the literature reviewed in this chapter, which goes back over 30 years. This re-
view will only highlight traditional approaches to scanpath comparison, providing
a stronger focus on the fundamentals for the results and discussion (Chapter 5)
of this work. It will provide an overview of how spatial representation is handled
with AOIs (section 3.1), which serves as the backbone for string alignment ap-
proaches (section 3.2). Then, how scanpath comparison extracts the subsequences
to gain insight on the transitional behavior is detailed (section 3.3). This gives
way to pattern recognition, which machine learning approaches attempt to auto-
matically extrapolate (section 3.4). Recent approaches with deep learning have
been able to successfully include attentional awareness and image semantics and
are overviewed. Finally, the state of the art for medical expert scanpath classifi-
cation is described (section 3.5). The contribution to the state of the art from the
current work adds to this collection, though is described in detail in section 5.5.
For more comprehensive overviews of the traditional approaches, the reader is re-
ferred to Anderson et al. [179], Dewurst et al. [180], Kübler et al. [181], Coutrot
et al. [182], and Fahimi and Bruce [183].

3.1 Areas of interest

One of the more straightforward approaches to scanpath comparison is to delin-
eate fixations relative to areas. These areas of interest (AOIs) can range from
purely spatial to areas of attentional or semantic interest. The most low-level grid
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3.2 String alignment

construction of AOIs is depicted in figure 3.2a. These grid-based approaches are
easy to implement and are stimuli independent, providing only fixation position
relative to an area, i.e. top-right, center, left-middle, etc. However, the resolution
of the grids can have an effect on scanpath comparison [184], [185]. For instance,
figure 3.2a shows two different grid resolutions that would output completely dif-
ferent scanpath strings for the same scanpath.

AOIs can also be constructed from attentional information in many ways [186],
[187]: Averaging scanpaths [188], [189], fixation density maps [190], or heatmap-
gradient segmenting (as depicted in figure 3.2b) [191], [192]. Purely salience-
based AOIs can also be produced from renowned models [186], [193], e.g. Itti-
Koch [93] and GBVS [194]. They discern the bottom up-attentional properties,
and offer a way to predict percievability [13], [51], [195]. For example, Geisler,
Weber, Castner et al. [13] incorporated gaze behavior for the attention map cal-
culation step in the GBVS model. This novel approach adds scene semantics to
previously bottom-up models. More important, this approach and other attention
approaches are data-driven, resolving the limitations that grid-based AOIs present
in scanpath analysis [186], [196].

Figure 3.3: Semantic AOIs

To provide high-level task information,
AOIs can be segmented based on the image
semantics. In the two images in figure 3.3,
we see two levels of task semantics: AOIs
based on the teeth and jaw structures vis-
ible in an OPT (top) and AOIs indicating
specific pathologies – and their level of dif-
ficulty to detect (bottom). The latter AOIs
were defined by the two expert dentists in-
volved in this project. Herein lies the limita-
tion of researcher subjectivity. AOIs respec-
tive to pathological errors require an expert
or experts to point out, and given the statis-
tics for underdections in radiology, this can
affect your semantic segmentation. Over-
all, they are more tedious because they are
manually defined and may not transfer to
all stimuli [10], [184].

3.2 String alignment

One approach to scanpath comparison is to characterize the scanpaths as an AOI-
representative string sequence as illustrated in figure 3.4. This approach is one of
the more prominent, even though it was originally developed for gene sequence
alignment in bioinformatics [179], [197], [198].
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The most basic metric is the Levenshtein Distance [199], where a cost is cal-
culated based on the minimum number of transformations needed to make the
strings similar [179], [197], [200], [201]. The Levenshtein distance has been
used for scanpath comparison in web page inspection [202], face perception in
autism [203], problem solving strategies [204], map reading [205], and system-
atic mammogram inspection [158]. However, such a simple character comparison
is limited because it scores on the basis of match/mismatch and can overlook sim-
ilarities in the scanpaths that happen on different timescales.

Building on similar concepts, global string alignment uses dynamic program-
ming to determine the most optimal alignment for the entirety of two sequences.
Here, one of the most dependable algorithms is the Needleman-Wunsch [198]. It
consists of three steps: 1© Matrix initialization, 2© similarity scoring, and 3© trace-
back. In 1©, a scoring matrix, M(m+ 1, n+ 1) is created, where m is the length of
one scanpath (A) and n is the length of the other scanpath (B). The first row and
column of M are then filled with the gap penalty. This penalty is the cost (gap) of
adding a space in one or the other string for proper alignment. Then in 2©, scoring
the character i in scanpath A against character j in scanpath B proceeds iteratively
using equation 3.1 sans stop criteria:

Mij = max


Mi−1,j−1 + S(ni,mj), Match

Mi,j−1 + gap, Gap in A

Mi−1,j + gap, Gap in B

0 Stop criteria.

(3.1)

If the characters match, this is generally positively scored via S as in the first case
of this equation, but if the characters do not match, a mismatch penalty takes the
place of S. However, single character comparisons are not being assessed, rather
their relative similarity is considered [206]–[208]. Due to this notion, the gap costs
need to be considered, i.e. if the optimal alignment benefits from a gap in A or B.
Hence, equation 3.1 takes the maximum of the cases at each comparison. Once
the scoring matrix is filled, step 3© outputs the similarity score (Mm+1,n+1) and
proceeds backwards to achieve the most optimal alignment given the direction of
the scores. This scoring system offers more flexibility, such as limiting the penalties
for either gaps or mismatches [206], [207], [209]. Taking the scanpaths in figure
3.4, and using 1, −1, and −2 for match, mismatch, and gap respectively, we can
see the global alignment (in blue), with two mismatches and one gap to determine
the best alignment.

The Needleman-Wunsch has been used for scanpath comparison in decision-
making strategies [207], [210] and programming expertise [185], [211]. An im-
plementation of the Needleman-Wunsch, ScanMatch [200] has been successfully
used for physics problem solving strategies [212], surveillance [213], and web-
page inspection [202]. The benefit of this approach is the overall impression of
how similar two sequences really are, which compared over multiple scanpaths, of-
fers information to aid in, i.e., clustering. However, the Needleman-Wunsch strug-
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Scanpath 1

Scanpath 2

Globally Aligned
B F E E G H F A
  | |       *
B D C E G H _ A

Locally Aligned
B F E E G H F A
  | |       *
B D C E G H _ A

Figure 3.4: Two scanpaths represented by a sequence of characters. Comparison of
these two scanpaths can be performed by string alignment approaches:
Global alignment (blue) or local alignment (orange). Still life with fruit,
a lobster and a goldfinch painting by Abraham Mignon (1660-1679), oil
on canvas. public domain https://commons.wikimedia.org/wiki/

gles with normalizing scores when comparing different length scanpaths, which is
often done by dividing the score by the length of the longer sequence.

Rather than deal with the entirety of two sequences, local alignment determines
the most optimal aligned subsequence as illustrated in orange in figure 3.4. The
most common local alignment is the Smith-Waterman algorithm [214]. Using the
same equation 3.1, this algorithm adds an extra case, 0, to terminate the backtrace
for subsequence extraction. Local alignment has also proved its versatility in scan-
path comparison. For example, comparison of medical undergrads clinical reason-
ing performance [215] and aptitude in reading interactive map displays [216]. The
benefit of this approach is that it compensates for sequences of differing lengths
and temporal shifts, e.g. a similar pattern at the beginning of one scanpath and at
the end of another can be coupled.

These alignment techniques, though commonly used, are simple to implement,
but slow: Having O(nm) time and space complexity.1 Given that most scanpath re-
search involves comparing multiple scanpaths, processing increases quadratically.
Additionally, they are restricted to the AOIs defined, which can be subjective [184],

1O(nm) overall, but also for filling the scoring matrix alone for both the Needleman-Wunsch and
the Smith-Waterman Algorithms [206].
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3 Scanpath Analysis

Figure 3.5: Expert AOI transitional behavior for control (no anomalies) OPT with
transition behavior on the right and transition overtime behavior on
the bottom left.

[185], [200], and the scoring and gap weights need to be set initially. Although
these approaches generally do not compensate for fixation duration information,
some approaches have incorporated temporal binning. ScanMatch [200], for ex-
ample, solves the issue of fixation duration by adding the AOI label a number of
times respective to time bins.

Given their limitations, string alignment algorithms are often the benchmark for
many researchers. They do not require many parameters and, in the optimal case,
extract scene or search semantics from AOIs. Ultimately, they work great for a large
variety of tasks given they generate the best output from all possible combinations.

3.3 Transitional behavior

The transitional information can reveal the most common transitions and what
catches the first fixation. Figure 3.5 shows how the transitional behavior for the
AOIs (top left) can be visualized: An interpretation of a transition matrix2 (right),
and AOI transitions over time (bottom). Moreover, scanpath comparison can also
be expressed in terms of AOI transitions overtime. For instance, Holmqvist et
al. [218] used AOI transitional information with a sliding window to get sequence
information for common and unique transition frequencies.

The transitional behavior of scanpaths can be best highlighted with pattern anal-
ysis, e.g. T-Pattern [219], [220] or Recurrence Quantification Analysis (RQA) [221].
These approaches point out areas of recurring fixations or fixation patterns and
handle patterns that can be temporally shifted. Moreover, these approaches of-
fer a new take on scanpath comparison that is not necessarily confined to AOIs.
Rather, they have shown that transitions can also be extracted from spatial in-
formation [222] or Fixation Density [182], [223]. This transitional behavior can

2A transition matrix denotes the number of transitions from each AOI to all other AOIs [217].
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3.4 Clustering and classification

further generate probabilistic states for e.g. Markov Models [182], [220], [224],
component analysis [222], [225], and entropy- or graph-based approaches [226]–
[229]. The elegance of these methods is that they recapture the long-term dynam-
ics. Markov Model-based scanpath comparisons have been used for face process-
ing [203], [230], task prediction [223], and image recognition [231].

Building off similar ideologies, prior assumptions from the transitional behavior
moves scanpath comparison towards classification. Bayesian-based classification
works with notion of the likelihood that this scanpath belongs to a certain group
given its features [87], [232]. It has produced models for neurodegenerative dis-
ease recognition [233] and for detecting cognitive style [234] among other classi-
fication models [196], [235], [236].

3.4 Clustering and classi�cation

There are machine learning models w.r.t. summary statistics (mean fixation count
or saccade length, etc.) for feature input, but they lack abstraction regarding, i.e.
variations during the search process (global vs. local) or detecting the task con-
text [237]. Hence, this review will focus on scanpath classification methods that
do not compromise the temporal integrity. There are two approaches: supervised,
where the data labels are known, and unsupervised, where groups are created
with no label information. Supervised learning can predict e.g. task type (e.g. the
Yarbus task [98], [223], [237]–[239]), where unsupervised learning can cluster
scanpaths based on dividing the data in a way that meaningful representations of
groups become evident [240].

3.4.1 Sequence and transition features

String-alignment approaches can also be an informative feature for model learning.
For instance, the Levenshtein distance has been used to classify problem solving
strategy [204] and face processing in mentally disabled individuals [203], and for
clustering based on general gaze similarity [205], [216]. The Needleman-Wunsch
has also been used for problem-solving strategy classification [207], [210] and sim-
ilarity clustering [216]. With clustering, common subsequence patterns and their
relations can be easily visualized with a dendrogram from hierarchical cluster-
ing [241], [242] or be used to distinguish groups, i.e. air traffic control strategies
of experts and novices [243]. One recent approach by Koch et al. [244] com-
bined string-alignment scoring (tested the Levenshtein distance and Needleman-
Wunsch) with image information (as slit-scans) for agglomerative hierarchical clus-
tering [245], [246] and found accurate clustering of a memory recall task based
on sequence similarity scores.

Recent approaches have introduced data mining techniques to scanpath anal-
ysis [12], [196], [241], [247]. For instance, MinHash from Geisler, Castner, et
al. [12] tackles the issue of string alignment’s time complexity by matching AOI
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Figure 3.6: Outline of the MinHash al-
gorithm for scanpath com-
parison from Geisler, Castner,
Kasneci, and Kasneci [12].
Best Paper award at ETRA
2020.
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subsequences using the same-named popular data mining approach [248]. The
workflow of the algorithm – as shown in Figure 3.6 – uses string subsequencing
(step 1©) , to extract word frequencies (step 2©) to go into a set of distinct hash
functions. Here, runtime is dramatically decreased by merely assessing the word’s
frequency at matches in the strings’ minimal hash response (step 3©) [12]. Then,
an approximation of the Jaccard Index is provided. The kNN classifies (step 4©)
an unseen scanpath’s pairwise Jaccard index to a training/model set. This method
of classification showed competitive results to a standard Needleman-Wunsch sim-
ilarity score as input, yet with significantly less runtime [12].

However, AOIs being tedious and subjective should be avoided. There are some
efforts that maintain string-based scanpath encoding but with a data-driven ap-
proach. For example, methods [250], [251] that use string-similarity clustering
with attentional AOI extraction from [187]. One renowned metric is SubsMatch
2.0 [181]. It couples sequence patterns and Support Vector Machines (SVMs).3

It works with the features from its predecessor, SubsMatch [249], [254]. As il-
lustrated in figure 3.7, it combines string representation with transition frequency
analysis to handle multiple subsequent fixations, which can correspond to behav-
ioral patterns [181]. Initially, a scanpath string is constructed by assigning letters
(bins) to fixations in a way that the final scanpath string contains roughly the
same number of occurrences of each letter (step 1.). Then, all possible subse-
quences of a given size (so-called n-grams, where n stands for the length of the
sequence) and their occurrence frequencies are calculated (step 2.). A similarity
metric between scanpaths can be calculated as the sum of differences between all
subsequence frequencies (step 3.) [249]. Classification was realized in SubsMatch

3SVMs use a hyperplane with the intent of maximal feature separation and are known for being
highly robust – even for small datasets; though they can rely on proper kernel selection [252],
[253].
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3.4 Clustering and classification

2.0, where the similarity metric was replaced by an SVM with a linear kernel that
takes frequencies of n-grams as input. Fundamentally, it sets out to determine the
best-fit subsequence length in conjunction with the best-fit string representation
in order to perform classification based on subsequence occurrences. SubsMatch
and SubsMatch 2.0 show high generalizabitily over a range of tasks (i.e. Yarbus,
SuperMarioKart, target detection [181]) and have also been used for classifica-
tion of expert and novice microneurosurgeons [254], driving scenarios [249] and
detection of distractions while driving [177].

3.4.2 Approaches that avoid AOIs

Figure 3.7: Workflow of Subs-
Match [249]. Permis-
sion to use this image
granted by the au-
thors [181], [249].

Geometric and vector based Other scanpath
classification methods have successfully em-
ployed SVMs without relying on AOIs, instead
they use more geometric-based features. For in-
stance, saccade vectors have been employed for
detecting neurological disorders [255], reading
behavior [256], [257], fatigue detection [258],
and many others. MultiMatch [180], [184],
[259] is a well-known scanpath comparison
metric that is based on the scanpaths’ geometry
and saccade vector patterns. Therefore, it does
not require AOIs and can handle spatial offsets
that can arise from positional errors. Show-
ing its versatility for comparison [260]–[262],
it has also recently extended problem-solving
classification with both an SVM and neural net-
work [204].

Saccade sequence features have also proved
to be a robust feature for clustering [263] and
other classifiers. For instance, random forests
have been used for scanpath-based preference
classification [264] using saccades and spa-
tial features at time segments.4 Similarly, one
approach by Fuhl, Castner, et al. [10] em-
ployed random ferns for scanpath classification,
though for saccade sequence features (see work
flow in figure 3.8). A fern represents features as
a binary encoding at an index. Then, a condi-
tional distribution is created, i.e. each class re-

ceives a probability based on the occurrences of features therein [267]–[269]. It

4Random Forests are an ensemble of decision trees, which can determine the best model [265],
[266].
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3 Scanpath Analysis

learns features from patterns in successive saccades. The features are then scored
to obtain the best features representative of a class. The benefit of this approach
is the use of saccade successions to avoid AOI dependencies and compensation of
positional and rotational shifts.

Angular ranges for saccade successions

Angle rotation - invariant or - variant 

Feature selection 
& scanpath evaluation 

Random Ferns classification

Figure 3.8: Workflow of scanpath classification with random ferns using saccade
angle features from Fuhl, Castner et al. [10].

Spatial and attentional representation Another way to avoid AOIs yet still
achieve a similar understanding of the fixation sequence is to go straight to the
positional information. Such approaches regard the spatial information, such as
positional features at temporal intervals for scanpath clustering [270] or classi-
fication [196], [222], [255], [264]. Therefore spatial representation over time
builds off the early comparison methods that used the fixation distributions – or
attention maps. Extracting the differences in these attention maps for scanpath
analysis is a common approach (e.g. Attention maps [271], [272], iComp [251],
iMap [189]), though out of the scope of this current review because they lack
the temporal information of the scanpath.5 However as previously mentioned,
these maps hint at bottom-up scene semantics and perception. Using attention or
saliency maps linked to a time period has also been for SVM classification in men-
tal workload [258] and neurological disorders [255]. The saliency maps benefit
scanpath classification by automating the feature selection. Moreover, this inter-
play of scene semantics and attentional effects provides input for deep learning
that works towards human perception [274].

3.4.3 Deep learning approaches

More recently, the use of Neural Networks for research in object classification [275],
image segmentation [276], [277], speech and gesture recognition [278], [279],
and now scanpath classification has expanded over the last few years due to recent
advances in hardware and data availability [280]. These networks are advanta-
geous in that they can handle high dimensional data and are able to easily rec-
ognize patterns [281]. However, they are often a black box. Understanding how

5See [183], [273] for a more detailed overview.
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the model learned e.g. to predict the animal as a cat from the features cannot be
deciphered. Neural Networks are layers of connected nodes, that take data in an
input layer. Learning happens through the weighted connections throughout some
hidden layers, and outputs the patterns recognized.

In scanpath classification, French et al. [204] classified adult and children gaze
patterns using a feed-forward back propagation network with features from multi-
dimensional scaling plots representing similarity. This approach was able to reduce
error in the training weights (the back-propagation step) after forward traversal of
the architecture. Another approach that can handle more sequential information
in the input are recurrent neural networks (RNNs). One type of RNN that has been
used quite recently in scanpath classification is Long-Short Term Memory (LSTM).
These models have exhibited their aptitude for handling time series data and fore-
casting [282], [283]. Their architecture handles learning relevant information
from long-term dependencies better [284]. For example, Sims and Conati [285]
found that a simplified LSTM architecture was better at classifying confusion from
scanpaths compared to a random forest classifier.

Convolutional Neural Networks (CNNs) [286] can provide information of image
semantics that can be used for segmentation [287], [288] or classification [289]
and saliency prediction [290], [291], and many other applications. In the field of
eye-tracking research, they have also provided robust performance in eye move-
ment behavior and scanpath generation [292], [293]. For instance, methods using
probabilistic models and deep learning techniques coupled with ground truth gaze
behavior have been shown to predict fixation behavior [294], [295] and regions of
interest [296]. Mishra et al. [297] created images depicting scanpath information
as input for a CNN sarcasm detector.

Both Tao and Shyu [298] and Chen and Zhao [299] employ CNN-LSTM net-
works that run on scanpath-based patches from a saliency-predicted map and clas-
sify autism spectrum disorder gaze behavior. In [298], square patches are defined
based on fixation positions as they occur in the scanpath. Then, each patch is
run through a shallow CNN, and the patch feature vector with the duration infor-
mation provides an LSTM network input for classification from a dense layer from
each patch. Additonally, Sodoké et al. [300] used eye movement sequences related
to a number of tasks – defined by specific orders of AOI glances – as input for their
CNN-LSTM for expert novice classification.

One limitation of CNNs can be their need for large amounts of annotated data
for training. An alternative solution is to train CNNs to generate new training data
out of existing images and easily generated data [301] – i.e., generative adversarial
networks (GANs). Their training process requires an image generator and a dis-
criminator that decides whether the generated image is real or simulated [301].
However, to reduce the effort required to determine the right learning parame-
ters, a cyclic loss function [302] is included, which also makes unpaired training
possible (i.e. unsupervised learning). Recently, GANs have been used for unsuper-
vised feature learning from scanpaths for intention prediction [303], [304]. Fuhl
et al. [11] combines this unsupervised approach to feature learning for further su-
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(a) Raw gaze encoded as 3D image.

(b) Work flow from encodji [11].

Figure 3.9: Use of unsupervised learning to create a feature space (generated emo-
jis in [11]) for task classification with a CNN

pervised task classification using a CNN. Initially, it encodes gaze data as a compact
image (see figure 3.9a) with the spatial, temporal, and connectivity represented as
pixel values in the red, green, and blue channels respectively – similar to [297].
However, the unconventional aspect to this approach is its use of a cycle GANs to
generate emojis based on the scanpaths (see figure 3.9b). Afterwards, the gener-
ated Emojis are used for scanpath classification using a CNN to predict the task
type.

Scanpath comparison and classification seeks to accurately determine task and
group differences in the gaze behavior. Over the years, models have become more
sophisticated to handle the a variety of tasks and subjects. The end goal is to
employ these models for challenging real-world tasks, i.e. expertise performance
for their domain specific tasks, which will offer immense potential for training
tools.

3.5 State of the art in medical expertise scanpath

analysis

Much of the expert eye movement research has relied heavily on summary statis-
tics as indicated in the overview in section 2.3. The literature so far has yet to
create a comprehensive understanding of an effective scanpath. Scanpath analysis
can offer advanced pattern recognition to quantify differences in the visual search
strategy between the many stages up to – and including – expertise. Research
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on scanpath classification for medical expertise is becoming more realized as a vi-
able approach for teaching interventions (see contribution in section 5.6). With
the recent propensity towards artificial intelligence, expert gaze models can even
support accurate model training [305]–[308]. Therefore, medical expert scanpath
models offers insight for both human training and automated system development.
Current approaches towards robust scanpath classification for medical expertise is
established from many of the aforementioned methods.

Building off traditional string alignment, Kok et al. [158] looked at the Leven-
shtein distance of expert and novices inspecting chest x-rays. Students had higher
scores (more dissimilar) compared to experts indicating less systematic scanpaths
among students. Davies et al. [309] looked at expert ECG readers and compared
the subjects with correct interpretation of the images to those with incorrect inter-
pretation. Overall, there were highly varying search strategies as seen by the scan-
paths. However, the average Levenshtein distance of all participants in a group
showed higher variability for subjects in the incorrect group. Whereas, subjects
who interpreted ECGs correctly had more similar scanpaths as indicated by lower
Levenshtein distance scores [309]. Using ScanMatch, Crowe et al. [310] found
experts had the highest level of scanpath similarity for brain tumor detection in
MRIs, while intermediates had the least similarity.

Regarding the scanpath structure, Drew et al. [168] found 2 main scanpaths
for volumetric images. The one scanning strategy was found to increase false
negatives and the other drilling strategy promoted less errors in diagnoses and
more areas covered. The scanpaths were recognized by tracking the depth of fix-
ations over time relative to anatomical quadrants. To quantify the patterns as
either zig-zagging or going deeper over time, they looked at fixation behavior rel-
ative to the quadrants. However, they were able to robustly classify scanning and
drilling [311].

Concerning scanpath features related to expert search, Li et al. [312], [313] used
autoregressive HMMs to cluster expert dermatologists eye movement into patterns
indicative of specific diagnostic tasks. They looked at expert, intermediate, and
novice dermatologists and how they classified skin problems. Experts and inter-
mediates had longer fixation durations and had decreasing saccade amplitudes as
an effect of viewing time. A dynamic hierarchical Hidden Markov Model (HMM)
based on the level of expertise could infer the scanpath patterns for particular mo-
ments in the image interpretation such as the primary morphology and differential
diagnosis; these patterns were also diagnosis specific [312]. Also using HMMs, Ah-
midi et al. [314] could distinguish expertise for varying minimally invasive surgery
tasks. Richstone et al. [315] looked at eye movement events (e.g. fixation and blink
rate, ICA [316]) for one second intervals during a surgical task and found a shal-
low neural network with back propagation fed this input could predict expertise
with over 90% accuracy. Their results indicated that expert surgeons remain more
focused for longer periods of time compared to novices.

From scanpath similarity, patterns indicative of expert scanpaths have been in-
vestigated. Concerning scanpath similarity, Kübler et al. [254] found that Subs-
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Match[249] outperformed the State of the Art (ScanMatch,HMMs, iMap, FuncSim,
etc.) in classifying expert and novice microneurosurgeon scanpaths. They found
that novices show more repetitive viewing to certain areas, where experts employ
quicker, more repetitive fixation behavior in certain image regions before a more
broader exploration of other areas [147], [254]. Regarding dermatologists, similar
gaze behavior was also found based on RQA [317].

Specifically for radiograph examination, Gandomkar et al. [318], [319] classi-
fied experience in mammogram interpretation using SVM with the features from
RQA, achieving 86% accuracy. They found experience corresponded with more
unique scanpath dynamics compared to novices [162]. This finding regarding
experts’ dynamicity from RQA was also found in orthopedic radiographs of the
hips [135]. Medical decision making coupled with attention-level in mammogram
inspection was modeled with deep neural networks in [305], [320]. These ap-
proaches offer insight into how certain expert gaze behaviors can be linked to false
negative likelihood.

Recently, the subsequences transitions from expert and novice radiologist were
clustered for expert and novices using data mining techniques (contrast mining
with temporal binning) for subsequence extraction [241]. Hierarchical clustering
was then based off the similarity of patterns; experts had more similar patterns,
and novices less so [241].

This work furthers the research of scanpath classification, contributing to expert
strategies in OPT image inspection. Although, summary statistics have supported
that expert OPT gaze behavior aligns with the findings of medical image inspection
in general [149], research has started to unsurface scanpath characteristics distinct
to OPT inspection [65], [154]. We support scanpath classification from previous
approaches, but in the context of distinguishing novice dentists, which is described
in section 5.4. Moreover, we introduce a new method for scanpath comparison
that combines deep learning and traditional sequence alignment and evaluate it
on expert dentist classification from the gaze behavior during OPT inspection. This
novel approach achieves an accuracy of 94% in expert novice recognition. Details
of the algorithm’s workflow and its evaluation are in section 5.5.
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Understanding Expertise in

OPT Inspection

OPTs are highly prevalent in dental medicine and require high-level perceptual ex-
pertise in conjunction with proper clinical understanding. Analysis of gaze features
can provide insight into the cognitive processes of experts and the development of
expertise. In addition, the scanpath offers a rich input for learning and expert mod-
els as it goes further than gaze summary statistics by formulating sequences that
characterize expertise levels. This work’s contribution is twofold: 1) gaze features
are linked to expert cognitive strategies and 2) expertise development is classified
with advanced scanpath classification metrics. Moreover, a novel scanpath classi-
fication method is presented and further used to develop an expert model for an
attention-aware gaze intervention. Chapter 5 details the outcome of this work.

To support the outcome, this chapter details the comprehensive investigation of
student and expert OPT inspection. Section 4.1 reports on the spectrum of exper-
tise sampled. Already, this work stands apart from previous literature because of
its extensive sample size, which further supports the evaluated approaches. Sec-
tion 4.2 explains the study protocol of how the images were presented to par-
ticipants and how their pathology detection could be compared to ground truth
information. The eye movements analyzed and pupillary response pre-processing
are described in section 4.3. Finally, a brief overview of other factors that were
controlled for pupillary response is given in section 4.4.

4.1 The data collected

The data collection took place over multiple semesters from 2017 to 2019. It was
done in the context of a larger project in collaboration with the Universitätsklinik
für Zahn-, Mund- und Kieferheilkunde (Collaborators: Dr. Fabian Hüttig and Dr.
med. Dr. med. dent. Constanze Keutel) and the Leibniz-Institut für Wissensmedien
(Collaborator: Prof. Dr. Katharina Scheiter) in Tübingen.

The Ethical Review Board of the Leibniz-Institut für Wissensmedien Tübingen
approved the student cohort of the study with the project number LEK 2017/016.
All participants were informed in writing and consented with a signature that
their pseudonymous data can be analyzed and published. Due to a self con-
structed pseudonym, they had the option to revoke this consent until the date
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4 Current Approach and Outcome

Table 4.1: The Project Data. First column indicates in which semester the data was
collected. Data from students sixth through tenth as well as experts was
collected over four separate collections. The sixth semester students
were measured on threes separate occasions (M1 - M3).

Sixth Seventh Eighth Ninth Tenth Expert

Measure M1 M2 M3

SS17 17 17 15 17 26 28 14
WS1718 16 18 16 4 19 25 8
SS18 24 24 19 2 12 5 28 26
SS19 3

Glasses* 18 6 12 - 5 8 11 9
Total 57 59 50 23 57 58 50 29
* indicates there was unknown data for some of the student data collec-

tions

of anonymization of the data after data collection was finished. The Indepen-
dent Ethics Committee of the Medical Faculty and University Hospital Tübingen
approved the expert cohort of the study with the project number 394/2017BO2.
All participants were informed in writing and consented verbally that their anony-
mous data can be analyzed and published. Due to a self-constructed pseudonym,
they had the option to revoke this consent at any time.

Novices Dentistry students in semesters six through tenth from the university
were invited to participate and have gaze and performance data recorded during
an OPT inspection task. For reference, sixth semester students are in the second
half of their third year and the tenth semester is in the fifth year of their studies,
which is last semester before they continue on to the equivalent of a residency.
The sixth semester students are incoming dental students from their initial pre-
med studies. They had no prior training in dental radiograph interpretation, but
basic conceptual knowledge in general medical concepts. This group was evalu-
ated three times (beginning, during, and end as M1, M2, and M3 respectively) in
each period of data collection due their curriculum requirement of an OPT inter-
pretation training course. This is the only semester that includes this obligatory
course, which covers instruction and starts massed practice OPT interpretation.

At the time of the contribution to student scanpath classification [1] there was
only one data collection from students from semesters six through ten. Addition-
ally, only sixth semester students at the end of their OPT course (M3) were eval-
uated against experts regarding their pupillary response in the contribution [4].
This decision was due to potentially having higher cognitive load as well as con-
ceptual knowledge. Finally, for the evaluation of a novel scanpath method [5],
only incoming sixth semester students were evaluated against experts to avoid
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4.2 Study protocol

over-representing students in the model.

Experts Experts from the university clinic volunteered their expertise for the cur-
rent project. Experience was defined as professional years working as a dentist. All
experts had the necessary qualifications to practice dentistry and or any other den-
tal related specialty: e.g. Prosthodontics, Orthodontics, Endodontics, etc. In total,
their years experience was an average of 10.16 and ranged from 1 to 43 years. 50 %
of experts reported seeing between 11 and 30 patients on a typical work day and
the remainder saw less than 10 patients a day. At the time of [3], there were only
26 dentists, whereas in later evaluations [4]–[6], the total data set of experts was
available for evaluation.

4.2 Study protocol

Instruction

Fixation

Exploration

Instruction

Marking

Fixation

2 s

45 s

Unlimited
Instruction

or
90 s

Figure 4.1: Outline of Experimental Session. For each image, there is a fixation
cross for baseline data, then an exploration phase (45s duration for
experts and 90s for students), and marking phase (unlimited time).
Students received two sets of 10 OPTs with a break in between and
experts received one set of 15 OPTs with a break after the first seven.

The experimental protocol for students and experts consisted of an initial cal-
ibration, task instruction, then two image phases: Exploration and Marking (see
figure 4.1). Prior to the exploration phase, a two second fixation cross was pre-
sented. This served as baseline for our analysis concerning pupillary response
in [4]. Then, in the exploration phase, particpants were instructed to search the
OPT for anomalies that could be indicative of a pathology. Pathologies examples
were periodontal disease, cavities, insufficient fillings and abscesses, not includ-
ing sufficient fillings, missing teeth needing no further treatment, or prosthetics.
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4 Current Approach and Outcome

Students had 90 seconds to inspect each OPT, where experts had 45 seconds to
inspect each OPT. This shortened duration was determined because, much of the
previous literature has shown that experts are faster at scanning radiographs [24],
[28], [29], [138], [149], [155], [156], [158].

Then, following the exploration phase, the same image was presented in the
marking phase. Here, they were instructed to indicate any areas they found in the
prior phase that could be indicative of pathologies. This phase was self-paced, and
they marked the areas using an on-screen painting tool. The markings from this
phase served as detection performance data for [3], [5], [6], which is detailed
later in this section.

Students inspected two blocks of 10 OPTs in one experimental run and experts
– due to their hard-pressed schedules – inspected 15 OPTs. Both students and
experts were unrestrained during the experiment, although they were instructed
to move their head as little as possible.

Environment Data collection for students took place in a digital classroom equip-
ped with 30 remote eye trackers attached to laptops. This setup allowed for data
collection of up to 30 participants simultaneously, minimizing the overall time
needed for collection. For this study, verbal instructions were given en masse per-
taining to a brief overview of the protocol and an explanation of eye tracking, then
individual calibrations were performed with a supervised quality check; students
could then run the experiment self-paced.

Data collection for the experts took place in the university hospital so the experts
could conveniently participate during work hours. There, the room used for data
collection was dedicated for radiograph reading. The same model remote eye
tracker was used for expert data collection and was run with the same sampling
frequency on a laptop.

Eye tracker and pre-processing Data collection was done using an SMI RED250
remote eye tracker with 250 Hz sampling frequency. We used the included software
for both the experiment design (Experiment Center) and event analysis (BeGaze).
A quality assessed validation of the calibration was performed for each participant
prior to the experiment as well as after breaks between sets. An acceptable cal-
ibration was if is was less than one degree average deviation from a four point
validation.

Eye movement data was removed for images where the tracking ratio – pro-
portion of valid gaze points – was below 80 %. Furthermore, participants were
removed if they had missing data for more than two of the ten images.

4.2.1 Stimuli

Images had anywhere from four to fourteen anomalies types, though an anomaly
type (e.g. Caries) could be found in multiple areas in a single OPT. There were also
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4.2 Study protocol

control OPTs with no anomalies present. The OPTs were chosen from the univer-
sity clinic database by the two expert dentists involved in this research project, and
were determined to have no artifacts and technological errors. Both dentists inde-
pendently examined the OPTs and the patient work-ups and further consolidated
together to determine ground truths for each image.

A

C D

B

Figure 4.2: Example of the OPTs used in the experiment. Pre-determined ground
truths are indicated by the ellipses and their colors indicate the level
of difficulty each anomaly is: Green (least difficult), yellow (interme-
diary), red (most difficult) and white (nature of difficulty unclear).
Image (D) is the ground truth map for image (B). Each anomaly is
segmented and given a distinguishing integer.

Additionally, the level of difficulty for each anomaly was pre-determined. Fig. 4.2
shows three OPT examples. Anomalies are illustrated in green, yellow, and red,
and represent easy, medium, and difficult, respectively. For example, the green
anomalies in Fig. 4.2.A are a dental cyst (1) and insufficient root canal fillings.
(2a,b) in Fig. 4.2.C are an example of elongated lower molars due to missing an-
tagonists. The yellow anomalies in Fig. 4.2.B are irregular forms of the madibular
condyle (1,3) and (2) is an apical translucency indicative of inflammation due to
a contagious (bacterially colonized) root canal filling. The red anomalies in this
image are approximal caries (4) and a maxillary sinus mass. Anomalies indicated
by the white dashed circles were determined as ambiguous, e.g. the nature of
their difficulty and or pathology is unclear. For example, in Fig. 4.2.B (7,8) are
impacted wisdom teeth, though it is uncertain whether this will become a problem
for the patient and therefore is regarded as potentially pathologic. (6) is an apical
translucency at the mesial root apex and it is unclear whether it is indicative of an
inflammation. Therefore, they were kept in this analysis even though the nature
of their difficulty is uncertain.
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4 Current Approach and Outcome

Figure 4.3: Drawings from a participant (Red) with predefined anomalies (Dotted
Yellow), or targets, overlayed. In this example, the participant would
have four hits and five misses and two false positives.

4.2.2 Ground truth maps

We created maps for the OPTs (See Fig. 4.2.C) using Matlab 2018. As input, OPTs
were loaded as png files with their respective anomalies – all colored red. Thresh-
olding for red values was performed to automatically get the pixel coordinates
of the ellipse edges. Then, the ellipses were filled with the poly2mask() function.
Anomalies automatically extracted from this process were double checked for over-
lapping and had their boundaries corrected. Similar anomalies inside of another,
such as (2a,b) in Fig. 4.2.C, were grouped together as one anomaly. Other anoma-
lies too close together and too different in pathology, such as (3,8) in Fig. 4.2.C,
were excluded from the analysis, due to possible spatial accuracy errors in the gaze.
Similarly, anomalies that were denoted by too small of an ellipse were padded to
have a larger pixel area,e.g. (4) in Fig. 4.2.B, to account for the spatial accuracy
errors in the gaze. Each segmented anomaly is given a distinguishing integer for
its respective pixels.

Drawings obtained from the marking phase were compared to predefined anoma-
lies determined for each image. Participants’ indication of an anomaly by marking
it were hand-coded by trained evaluators in order to determine if the drawing
matched that of the specific target anomaly. A correct mark on an anomaly was
determined if the drawn circle overlapped or was within the predefined anomaly
by the evaluators.1

We report the performance in anomaly recognition with recall and precision. Re-
call (also known as sensitivity or true positive rate) is the number of true positives
over the total of true positives and false negatives. For example, four anomalies
were marked by the subject shown in figure 4.3 and five were not recognized

1Inter-rater reliability: 0.94 and 0.93.
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(false negatives); the recall is then 44%. Precision is the true positives over the to-
tal of true positives and false positives. False positives are determining there is an
anomaly when there is none. The same subject in figure 4.3 has two false positive,
thus precision is 67%. Precision and recall affect the harmonic mean (F1 score).

4.3 Eye movement behavior

Since the eye tracker has a high sampling frequency, both stable (fixations) and
rapid (saccadic) eye movement events for static stimuli can be measured. Only
events during the exploration phase of OPTs were evaluated, because the marking
phase data had too many spatial offset errors.2 Fixations and saccades for the left
eye, including tracking ratios per image, were calculated using the standard SMI
high-speed settings for the I-VT [85]: 50ms for minimum duration and 40°/s peak
velocity threshold and peak velocity start at 20% of the saccade length and peak
velocity end at 80% of saccade length.

To measure gaze behavior on the ground truth anomaly AOIs, x and y fixation
coordinates with timestamps are plotted to the ground truth maps (D in figure 4.2).
If the coordinates of a fixation were within or on the border of a target, it was
considered a glance hit. This concept was also applied in [3] to investigate how
often experts glance at anomalies.

To further investigate the mental processing for anomalies of varying difficulty
in [4], analysis for the pupillary response from the raw gaze data was used. The
raw data points also have pupil diameter output in millimeters [321].3 For further
signal processing, we removed gaze coordinates and pupil data for the raw data
points labeled as saccades. Data points with a pupil diameter of zero or labeled
as a blink were also removed. Additionally, data points 100 ms before and after
blinks were removed, due to pupil size distortions from partial eye-lid occlusion.
Lastly, the first and last 125 data points in the stimulus presentation were removed
due to stimulus flickering [322]–[324]. The remaining data was smoothed with
a third order low-pass Butterworth filter with a 2 Hz cutoff as illustrated by the
purple data points in Fig. 4.4.

Similar to [3], the processed gaze points that land in each anomaly are a gaze
hit, and that anomaly’s level of difficulty is extracted. For all gaze hits on an
anomaly for a participant, we calculated the median pupil diameter. The median
pupil diameter for each anomaly was then subtracted from the respective baseline
data for that image. We performed subtractive baseline correction because it has
been found to be a more robust metric and have higher statistical power [325].
Therefore, the difference from baseline could indicate diameter increase (positive
value) or diameter decrease (negative value) compared to baseline.

2Too many participants moved for this phase.
3Millimeters extrapolated from pupil height and width dimensions in pixels [321].
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Figure 4.4: Raw signal from the left eye (orange) and the smoothed signal (purple)
with a Butterworth filter with 2 Hz cutoff.

With the gaze hits on anomalies of varying difficulties, we can evaluate the pupil-
lary response of both experts and students during anomaly fixations. The pupillary
response, as measured by change from baseline, can then provide insight into the
cognitive load both groups are undergoing while interpreting the anomalies.

4.4 Context relevant to pupillary response

measurement

More important to the cognitive load study [4], both data collection environments
had the room illumination levels controlled with no effects from sunlight or other
outdoor light. The standard maintained illuminance for experimental sessions was
between 10 to 50.4 It is advised that environment illumination during radiograph
reading should be ambient (25–50 lux) for the best viewing practices [326] and to
optimize contrast perception in radiographs [327]–[329]. Therefore, with room
illumination controlled, we can evaluate pupillary response independent of envi-
ronmental illumination changes.

Regarding the screen display, radiograph reading is not affected by the lumi-
nance of the display [328]. However, both the laptop models used for the ex-
perimental sessions abide by the multiple medical and radiology commission stan-

4lux was measured with a lux sensor (Gossen Mavo-Max illuminance sensor, MC Technologies,
Hannover, Germany).
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dards [156], [326], [330].5 The HP Z Book 15 (for students) has screen brightness
averages approx. 300cd/m2 [331]. The Dell Precision m4800 (for experts) aver-
ages approx. 380cd/m2 [332]. While the screen luminance was also controlled
and followed the standard protocols for viewing radiographs, the exact effect of
the screen brightness on the pupillary response is out of the scope of [4].

5Pixel density affects comfortable viewing distances of 30 to 60 cm and a monitor luminance
should be at least 200 cd/m2 to 420 cd/m2.

39
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This work derives expert visual search strategies through highly data-driven ap-
proaches. The contributions that support expert and novice cognitive processing
are detailed in sections 5.1 and 5.2. These contributions use expert-defined anoma-
lies (detailed in section 4.2.2), which offer ground truth comparison for further
investigation of decision making. However, the contributions on scanpath analysis
(found in sections 5.4 and 5.5) move towards extracting behaviors without AOIs
and image-independent semantic understanding. Ultimately, these contributions
can be generalized to visual search behavior beyond the evaluated context and to-
wards general medical image inspection. The present proposal also works towards
gaze-based intelligent systems by providing a framework for attention-aware real-
time guiding systems for medical image inspection (section 5.6).

5.1 Fixation behavior related to expert

performance

It is known that experts have more effective search strategies (see section 2.3.2)
and are better at detecting anomalies [28], [133], [149]. However, when an ex-
pert does not mark an anomaly after seeing it, which mechanisms determine that
cognitive decision? Fixation duration can be applied to distinguish different er-
rors [58]. For instance, a false negative can be classified as either a search error
(no fixation on target), a recognition error (short fixation duration on target), or a
decision error (long fixation duration on target). Building on the findings that at-
tention allocation can affect misclassification during decision making process, we
looked at glance behavior of expert dentists.

5.1.1 Relation between �xation and recall

Experts detected around 50 % (SD = 11.12) of anomalies in the OPTs. Although,
there was high variability between images: Recall ranged from 96 % to 0 and
precision ranged from 96 % to 54 %. The average harmonic mean (F-score) was
60.89 % (SD = 8.65). Diniz et al. [76] found comparable recall rates (20 to 40 %)
in dentists and attributed it to overlooking certain anomalies where the treatment
cost could possibly outweigh any long term benefit.1

1Cost not only implying price, but also effort, pain evoked, rehabilitation, etc. [76].
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Figure 5.1: Relationship between overall gaze recall and marking recall. The
lighter hues are indicative of higher marking recall.

This allusion of overlooking was further supported by the findings concerning
gaze behavior. There was a slight, though insignificant, relationship between the
gaze and detection of anomalies ( r = 0.33, p = 0.11; see figure 5.1). More
interesting, gaze on anomalies was overall higher (M = 69.82%, SD = 8.44%)
than the recall behavior. High sensitivity to looking at anomaly areas can indicate
effective searching of possible areas where pathologies reside. Thus, experts often
looked at an anomaly area, although they marked it roughly at chance level.

Moreover, the amount of gaze on an anomaly affected its likelihood to be de-
tected. The number of glances on a detected anomaly (M = 2.34, SD = 3.25) was
significantly higher than an anomaly that was not detected (M = 1.51, SD = 1.82),
t (2850) = 8.35, p < 0.001. The frequency of glances per anomaly as seen in fig-
ure 5.2 shows that for unmarked anomalies, there is a higher frequency for zero
glances or one glance. For marked anomalies, there is also a trend to glance once.
However, when there are three or more glances on an anomaly, there is a switch in
the marking behavior, where the frequency is higher for anomalies marked com-
pared to anomalies unmarked.

5.1.2 Implications for decision making

In line with the findings for fixation duration [28], [58], the number of glances
can determine the cognitive mechanisms behind false negatives. For experts, we
found very few occurrences that could be similarly classified as a search error, i.e.
an anomaly was not detected because it was not looked at. A recognition error, on
the other hand, occurred when an anomaly was not detected as such, but glanced
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5.1 Fixation behavior related to expert performance

Figure 5.2: Frequency of glances for marked (detected: blue bars) and unmarked
(not detected: red bars). The frequencies when number of glances
per anomaly is 3 (green arrow) or more is overall higher for when an
anomalies recognized in contrast to when not.

at once or twice. In this case, an expert may look over an anomaly and determine
that it is not worth further scrutiny. Then, a decision error is characterized by
frequent glances to the area. This high number of glances could indicate that more
cognitive processing is involved for determining the nature of the anomaly (see
section 5.2 for further support).

5.1.3 Insight towards e�ect of anomaly di�culty

Decision errors were generally less frequent in our findings, though presented an
interesting direction for further research. As previously mentioned, we found high
variability in the performance between images. This behavior was also apparent in
the gaze. Figure 5.3 shows that the image content varies the glance frequency for
detected anomalies (marked) and false negatives (unmarked). One image (Figure
5.3a) elicits higher frequencies for glancing at an anomaly (3+ glances) to properly
detect it. This gaze behavior could indicate that the anomalies in this image are
more difficult to detect and, thus, require more examination. Conversely, another
image (Figure 5.3b) has an overall higher tendency for false negatives. Here,
experts had 8 or more glances on an anomaly and still made a false decision.

Since it has been supported that the image content effects expert and novice
gaze [28], [137], [149], [154], these findings prompted further investigation into
the nature of anomaly difficulty on cognitive strategies. The idea behind these
findings would be to employ expert glance behavior as a predictor of how easy
or hard an anomaly is to accurately detect. Furthermore, the scanpath, or order
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(a) An image where the number of
glances on anomalies were higher
when marked in contrast to when not
marked.

(b) An image where there is a high amount
of false negatives in marking although
there is a high frequency of higher
glances per anomaly.

Figure 5.3: Two image examples variability in the glance behavior shown by his-
tograms of the glance frequency.

that the anomalies were fixated on, can highlight the patterns that indicate expert
search behavior and is of great interest for further research. Understanding the
cognitive processes involved in effective medical image interpretation through the
gaze can offer expert insight into teaching novices effective decision making skills.

5.2 Cognitive load indication in visual search of

experts and novices

In general, as task difficulty increases, so does the workload [121] and correspond-
ingly, the pupil dilation [103], [116], [316], [333], [334]. Uncertainty as well as
perceived task difficulty have been found to affect the pupillary response, and ac-
quired knowledge has been shown to reduce these apprehensions [23], [114].
Prior knowledge of a problem has also been shown to reduce cognitive load [104],
[110], [335], [336].

The current work was built on the premise that gaze behavior in expert dentists
changes with difficult images [3], [149]. Thus cognitive processing may adapt
to handle these difficulties. This work goes one step further by examining the
adaptability of cognitive processes during visual inspection of multiple features in
decision making. We measured pupil diameter change from baseline when gazing
on anomalies of varying difficulty during visual search of dental panoramic radio-
graphs. We found changes within the visual search of an OPT in contrast to the
overall response to image interpretation.
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Figure 5.4: Pupillary Response of Experts and Novices During Visual Inspection.
The median pupil diameter change from baseline for students (blue
bars) and experts (red bars) for the overall image behavior (5.4a) and
when gazing on anomalies of varying difficulty (5.4b). Standard errors
are indicated in black. Students had larger pupillary response from
baseline compared to experts, but this effect was homogeneous for the
differing anomalies. Whereas experts showed an increased pupillary
response behavior as an effect of increasing difficulty.

5.2.1 Support for cognitive load in students

Initially, our findings were supported by the previous literature [108], [110], [119],
[120], [170], [171], where students’ pupillary response from baseline is higher
that experts (see figure 5.4a). Independent of anomaly difficulty, students’ pupil-
lary response (M = 0.314, SD = 0.315) had a larger increase from baseline than
experts (M = 0.057, SD = 0.353, t(568) = −8.824, p < 0.001). Cognitive load is
often used to explain this behavioral response regarding learning [117], [335]–
[337]. For instance, Tien et al. [119] found that novices reported higher memory
load compared to experts performing the same task. This behavior can be likened
to students’ lack of conceptual knowledge and experience, leading them to “think
harder” to interpret these images [338], [339].

One of the more interesting findings is the lack of influence of anomaly gradation
on student cognitive processing. Students showed larger and more homogeneous
pupil size change from baseline for all anomaly gradations compared to experts
(see figure 5.4b). One would imagine that even the most pronounced of anoma-
lies would make the recognition process easier. However, our findings from student
pupillary response indicate that, regardless of how conspicuous, the level of mental
workload remains constant. Figure 5.4b details the pupillary response of experts
and novices on the varying anomaly difficulties. A 2(expertise) × 4(anomaly) fac-
tor ANOVA found a main effect for expertise (F (1, 1388) = 161.68, p < 0.001),
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though there were no significant effects of anomaly difficulty on student pupillary
response.

5.2.2 Experts' adaptability to di�culty

The most interesting finding is that there were significant effects of anomaly diffi-
culty on expert pupillary response. The ANOVA revealed a significant interaction
between expertise and anomaly difficulty (F (3, 1388) = 2.76, p = 0.041). Post hoc
analyses with Bonferroni correction for anomaly difficulty on the expert data re-
vealed significant differences for the more difficult anomalies (M = 0.246, SD =
0.370) compared to least difficult (M = 0.0514, SD = 0.396, t(207) = −3.0582, p =
0.003) and ambiguous (t(150) = 3.1796, p = 0.002). There were no significant dif-
ferences for medium (M = 0.1259, SD = 0.3904) compared to the difficult anoma-
lies (t(200) = 1.8989, p = 0.059). Therefore, experts had the largest pupil size
change from baseline for more difficult anomalies, especially compared to least
difficult and ambiguous anomalies.

As the gradation of difficulty increases so did the pupillary response in experts.
The red bars in figure 5.4b shows the least pupil size change from baseline for the
least difficult anomalies and the largest change for the more difficult anomalies,
with the medium difficult anomalies producing a response in between. This be-
havior, however, was not evident for the ambiguous anomalies, which showed the
smallest response change from baseline. This effect may lie in the uncertainty of
these anomalies as determined by the two experts involved in the project.2 There-
fore, it is uncertain how difficult, easy, or even existing these anomalies were (see
description in section 4.2).

Our findings suggest that students may employ similar cognitive strategies that
evoke higher load for all anomaly gradations. Comparatively, experts employ more
efficient strategies [116]; however they are more sensitive to task features. They
generally know where anomalies are prevalent and how they are illustrated in the
image features. When inspecting these specific areas, pupil dilation fluctuation
can be indicative of changes in their cognitive processes to accommodate more
complex features. Additionally, the pupillary response can be indicative of their
selective attention allocation [133], which promotes quick recognition of anomaly
specific features. Depending on the gradation of the area in focus, proper interpre-
tation can be instantaneous (low workload) or may need to evoke adaptations in
the decision-making strategies.

Interpretation of medical images is not trivial and certain image or pathology
features can hinder the true diagnosis. Experts are more robust at determining
more difficult or subtle anomalies [76], [149], [156], [158], [340]. Although
when anomalies become harder to interpret, experts evoke pupillary response in-
dicative of increasing task-difficulty, leading to behavior that is likely of more thor-

2This category was a mixture of potential areas that may or may not have included an anomaly,
or anomaly, but with no cause for alarm.
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Figure 5.5: Visualization of fixations from a student in each semester evaluated in
the current study as indicated by the colored numbers respectively. In
this condition, the sixth semester student’s data is prior to training.

ough inspection. With more insight into expert decision making during visual
search, appropriate learning interventions can be developed. These interventions
can incorporate not only the scanpath behavior, but also the cognitive load during
appropriate detection of pathologies. From this combination, image semantics can
be better conveyed to the learner. Training sessions that convey the appropriate in-
formation through adaptive gaze interventions by detecting the gaze and cognitive
load offer a promising direction for medical education.

5.3 Cognitive processes: From gaze features

towards the scanpath

Gaze features (i.e. eye movement events [24], [28], pupillary response [4], etc.)
are capable of explaining differences in the cognitive-processes of experts and
novices. Conventionally, expertise literature (see section 2.2) employs standard
key metrics in quantitative analysis and tries to fit high-level pattern hypotheses
by looking at such metrics, e.g. longer fixations indicate more focused viewing. Al-
though this approach is well suited to the analysis of differences between experts
and students, advanced pattern recognition and analysis algorithms are needed to
identify and quantify differences in the visual search strategy between advanced
learners, residents, and expert practitioners.

Differences in the scanpaths of experts and novices is starting to gain visibility
in the literature (See overview in Chapter 3). Yet, scanpath differences relating to
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the developmental stages is severely under-investigated. It is interesting to observe
whether scanpath differences already appear between novices of different levels,
since student curriculum each semester builds off of existing knowledge structures.
Figure 5.5 shows the evolution of students’ scanpaths taken from the current study.
Here, the sixth semester student has some basic anatomy knowledge, but not in
the context of OPTs. His or her scanpath shows fixations only on the teeth and
no peripheral area exploration. A change in exploratory behavior is seen with the
seventh semester student, where scanning behavior that compares similar areas of
the jaw on the left and the right is present. Then, the eighth, ninth, and tenth
semester students exhibit more coverage of the OPT; specifically, less fixations on
the teeth and longer saccades spanning the upper and lower jaw areas.

Understanding the scanpaths in an effort to find patterns determinant of a devel-
opmental level can ultimately build an adequate representation of eye movements
for the complete learning process. Therefore, a model initially should recognize
gaze patterns (i.e. subsequences) that are characteristic for a dentist at a respec-
tive expertise level. Then, building off accurate recognition, scanpath components
can further be clustered based on patterns representative of key phases in effective
visual search, i.e. systematic, comparative or explorative. Such patterns are likely
to contain highly discriminative information, which is not bound to e.g. one spe-
cific OPT. Rather, the patterns can be linked to the specific semantics of a certain
structure or anomaly.

The strength of the scanpath classification methods we implement is that they
are completely data driven and do not rely on any expert labeling (e.g. AOIs).
Therefore, we are also able to capture potential novice effects that an expert may
not realize, such as unsystematic scanning of regions that experts would not find
worthy of labeling as an AOI.

5.4 Distinguishing dental students through

scanpath classi�cation

In this work, we set out to determine whether eye movement differences among
novices become apparent and, if so, at what level of task-knowledge. Using Subs-
Match2.0 [181] and a Nearest-Neighbor classifier with Needleman-Wunsch scores,
we evaluated each of the sixth semester datasets (pre-, mid-, post- or M1, M2, M3
in table in chapter 4) against the data from semesters seven through ten. Since the
classifiers are trained on five groups with datasets roughly balanced, guess chance
level was around 20 %. After removal of data with low tracking ratios, 139 data
sets were used: With 73, 68, and 68 participants for training the respective pre-,
mid-, and post-models, and a total of 15 participants – three per each semester –
were set aside for validation.

Table 5.1 details the overall accuracies for the models. Both classifiers are ca-
pable of distinguishing semesters above chance level for pre- and post-conditions.
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Table 5.1: Model Classification Accuracy for Data

Condition Subsmatch 2.0 Needleman-Wunsch

Test Validation Test Validation
Pre-Training 37.20 % 28.06 % 37.20 % 30.90 %

Mid-Training 34.49 % 20.14 % 36.30 % 20.14 %
Post-Training 34.48 % 25.18 % 33.73 % 23.74 %

Above all, the highest accuracy is for the pre-training condition, where the sixth
semester students are measured before their OPT analysis training. The results
show that the curriculum in this semester – specifically, the OPT training course –
is very relevant to the gaze behavior.

More important than overall performance is how the semesters were distin-
guished. Figures 5.6 and 5.7 show both classifiers’ confusion matrices for each
condition. A breakdown of the classifiers and their performance is detailed below.

5.4.1 SubsMatch 2.0 algorithm classi�cation

For training the SVM, both the percentile binning (from [181]) and the gridded
bins (from [200]) were evaluated. We chose the latter approach for our data be-
cause it provided higher accuracies. However, it should be noted that the overall
difference in classification accuracy for gridded and percentile binning was mini-
mal, so either approach could be employed.

After a leave one out cross validation on the training data, as described in [181],
the SVM model suggested the respective n-gram and alphabet size parameters for
all conditions: 2 and 3 for pre-training, 3 and 7 for mid-training, and 2 and 7 for
post-training.

Figure 5.6: SubsMatch 2.0 semester classification on the validation data. From left
to right, confusion matrices for conditions pre-training, mid-training,
and post-training are presented. With TPR for each semester along the
diagonals. Note that the colorbar for all conditions is scaled at .5.
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Figure 5.6 details the Subsmatch 2.0 classifier’s performance with the confusion
matrices for the pre-, mid-, post-training conditions. Subsmatch 2.0 accurately
distinguishes pre-training sixth semester students (53.33 %, first matrix) and post-
training sixth semester students (36.67 %, last matrix) from higher semester stu-
dents. However, mid-training sixth semester students affect the model by produc-
ing high misclassification rates.

The models were not able to consistently discern students in higher semester. In
the pre-training condition, ninth semester students were accurately classified; but
eighth semester and tenth semester students were highly misclassified as the ninth
semester (69.23 % and 41 % respectively). Even in the mid- and post-training
conditions, tenth semester students were also misclassified as seventh or ninth
semester. Thus, tenth semester students for all three models were always mis-
classified and the seventh through ninth semester students were more likely to be
misclassified as either the previous semester or the following semester.

5.4.2 Needleman-Wunsch similarity classi�cation

Using a 6×5 AOI grid3, multiple pairwise scanpath similarity scores were calculated
with the Needleman-Wunsch algorithm: 2, −2, and −1 for matches, mismatches,
and gaps, respectively. Then, a one-nearest neighbor classifier determined the
class label of the scanpath with the highest similarity to the current scanpath. This
approach follows the assumption that scanpaths of students in the same class will
have higher similarity to each other.

Figure 5.7: Needleman-Wunsch semester classification on the validation data.
From left to right, confusion matrices for conditions pre-training, mid-
training, and post-training are presented. With TPR for each semester
along the diagonals. Note that the colorbar for all conditions is scaled
at .6.

Figure 5.7 details the Needleman-Wunsch classifier’s performance with the con-
fusion matrices for the pre-, mid-, post-testing conditions. Similar to Subsmatch

3As determined to be the most optimal resolution from training. One AOI corresponds to 320×216
pixels.
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2.0, sixth semester students in the pre-training model (first matrix) are accurately
classified (80 %). However, the model highly misclassified students from other
semesters as this semester, e.g. eighth and tenth semester students. Otherwise, the
ninth semester students are accurately classified, and this also was the case for the
mid- (middle matrix) and post-training (last matrix) models. The tenth semester
students are again misclassified as seventh semester students, which is similar to
the SubsMatch classifier. More interesting is the slight shift in the sixth (mid- and
post-training models) and seventh semester (all models) students, where they were
misclassified more often as higher semester students. In all models, seventh and
eighth semester students were more likely to be classified as ninth semester.

5.4.3 Classi�cation compared to statistical analysis

Both algorithms were highly capable of distinguishing sixth semester students in
the pre-training condition and, if they falsely classified students, the students were
likely classified as either the preceding or successive semester. More interesting,
there were no significant differences between semesters six through ten regarding
the overall fixation duration on expert defined anomalies (p = 0.826). Moreover,
differences in fixation duration within the 6th semester (pre-, mid-, post-training)
were not significant (p = 0.881). Thus, the classifiers were able to distinguish
the effect of targeted training on the scanpath behavior where summary statis-
tics fell short. With SubsMatch’s focus on high-frequency subsequences and the
Needleman-Wunsch’s global similarity, both classifiers could extract temporal pat-
terns. Considering that there is only a few months difference between semesters,
the models are sensitive to subtle differences in the sequences.

5.4.4 Scanpaths revealed pattern information related to

learning

Both SubsMatch 2.0 and Needleman-Wunsch algorithms are similarly capable of
distinguishing semesters from the scanpath data. Both are highly accurate at clas-
sifying sixth semester students with no prior training in OPT analysis as well as
distinguishing sixth semester students after their OPT training course. This dis-
tinction is well in line with the curriculum received by sixth semester students.
Thus, the scanpath behavior is highly illustrative of knowledge level prior to tar-
geted OPT training. Accordingly, the understanding developed as a result of this
course is very relevant to the gaze behavior. The one-nearest neighbor Needleman-
Wunsch classifier is very sensitive to the pre-training sixth semester and, therefore,
more likely to classify any dataset as such, e.g. eighth and tenth semester students.
With this consideration, SubsMatch 2.0 performs better separation between the
pre-training sixth semester students and all others.

The classifiers were similarly at chance level for the mid-training model. This
effect could stem from heterogeneity in learning speed and success. In the frame-
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work proposed by [341], the initial stage of expertise development is multi-faceted.
Not only is it a foundation of anatomy and pathology knowledge, but also spatial
abilities and the ability to mentally manipulate images. It is possible that some
students advance in one of these areas, but not in another (i.e. high anatomy re-
call, but not yet in a clinical context), hence the overall behavior is not consistent
enough to be easily distinguishable. However, the classifiers appropriately distin-
guish the post-training sixth semester students from higher semesters students,
though to a lesser extent than the pre-training. Imminent final exams motivating
students to study could be a possible effect seen in this condition. Hence, these
students were likely to be misclassified, as was the case for high semesters with
the Needleman-Wunsch classifier and, to a lesser extent, with the SubsMatch 2.0
classifier.

Al-Moteri and colleagues [164] found that clinical experience evoked gaze be-
havior that was more goal-driven and less stimulus-driven [156], [164]. Their re-
search supports that experts are less drawn to salient features with no diagnostic
relevance. However, the scanpath differences we found before and after targeted
training could also be explained by this notion. For instance, less experienced stu-
dents may be more drawn to salient areas, such as the teeth, and may neglect more
important areas that have more subtle cues when compared to more advanced stu-
dents in the same semester.

Overall, it is apparent that OPT exploratory behavior shows considerable initial
change. However, these patterns become more homogeneous over the course of
the higher semesters, resulting in the classifiers consistently misclassifying eighth,
ninth, and tenth semester students. The gaze behavior differences between these
semesters are not as large or clear as when compared to sixth semester students.
Thus, there seems to be a gaze behavioral plateau once students reach these later
semesters, where visual search behavior of OPT does not appear to change drasti-
cally.

However, this behavioral plateau aligns with the curriculum for higher semesters.
Only the sixth semester students receive this OPT targeted training alongside lec-
tures with a focus on radiology and clinical knowledge. Seventh semester students
receive one other radiology lecture, but then the curriculum focuses more on den-
tal care and orthodontology. After the seventh semester, there are no courses ad-
dressing OPT analysis, rather other concepts related to orthodontics, prosthetics,
or diseases and treatment. Students in the higher semesters also take practical
training courses as well as supervised treatment of patients, though there is no
requirement to review OPTs, nor is there further training targeted at OPT analysis.

Moreover, the tenth semester students are misclassified as seventh semester stu-
dents relatively often. This finding could be due to lack of OPT exposure in the
curriculum of higher semesters. Whether their gaze behavior is similar to that of
seventh semester students due to outstanding effects has yet to be determined.
One possibility could be the expertise reversal effect [159], where, at some point
in their studies, they have increased cognitive load (a prime example being their
final medical school examinations). Another possibility could be that the tenth
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semester students start to slowly develop and test their own gaze shortcuts. Tenth
semester students could be transitioning towards intermediate level, and their vi-
sual search strategies start becoming more personalized. Cooper et al. [140] found
that radiologist trainees, though more accurate than novices at identifying anoma-
lies in MRIs, spend the same amount of time searching the image. The authors
liken this behavior to constructing their own visual pattern, where more advanced
trainees shows similar gaze patterns to experts [140]. Future research could fur-
ther compare students in their last semester at university against first year interns
in order to determine if there are any changes in performance as well as visual
search strategy.

Furthermore, we were able to distinguish OPT exploratory gaze behavior at a
semester level through methods of scanpath classification. Both models evaluated
indicated that there was an initial effect in the sixth semester students, which is
in line with the sixth semester curriculum. Additionally, higher semester students
become less distinguishable in their gaze behavior, which could also be caused by
minimal OPT training in the curriculum of these semesters. Whether continuous
routine OPT image interpretation in higher semesters would lead to more effec-
tive visual search strategies and ultimately better performance poses additional,
interesting questions for future research.

.

5.5 A deep semantic gaze embedding approach to

scanpath classi�cation

Even though conventional scanpath classification approaches were able to distin-
guish the slightest behavior difference between students, these methods do not
realize the image content’s effect on the gaze. As mentioned in section 2.3, con-
spicuous and subtle anomalies can highly affect expert and novice scanpaths as
they need to adapt their decision making strategies. Certain areas can also be
more prone to anomalies, which affects the context of the search. Scanpath classi-
fication has yet to recognize gaze patterns linked to these features (e.g. anatomical
structure, subtle anomaly, technical error, etc.) unconstrained to a specific image.

In this work, we propose a method that incorporates high-level, deep neural
network-generated image patch representations into classical scanpath compari-
son measures. This novel approach allows similar features across images to be
recognized (see figure 5.9). We apply our method DeepScan to decode expertise
from eye movements during dental radiograph inspection.

It is worth noting that this metric is not confined to dental expertise recognition,
but rather developed with the intention for various use cases. It offers the future
potential to assess a student’s learning progress in realtime and to adapt stimu-
lus material based on current aptitude, while not being restricted to the stimulus
material used during creation of the classifier.
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Figure 5.8: Proposed Model: DeepScan. For a scanpath, we extract the fixation
locations and, using the VGG-16 CNN architecture, we create a feature
corresponding to an image patch relative to the ith fixation F(fi). The
resulting vector illustrating the scanpath S can then be compared to
another scanpath vector. The pre-trained VGG-16 network consist of
5 blocks of convolutions with ReLus with max-pooling between each
layer.

5.5.1 Proposed approach: DeepScan

Scene semantics extracted from �xations Each individual fixation corresponds
to the visual intake of a certain stimulus region. We then encode each fixation lo-
cation on the specific stimulus image using a vector that describes the local image
region. We generate such encodings via the output from the VGG-16 architec-
ture [342]. Accordingly, for each fixation location on the stimulus image, we ex-
tract a patch of 100 × 100 pixels as input to the network. This step is relatively
similar to [298], although we determined that using a fixed size bounding box is
adequate for our stimuli. The fixation coordinates indicate the center of the image
patch’s bound box, unless a fixation is too close to the stimulus borders. Then,
appropriate shifting of the box along the x or y axis is necessary.

The architecture we employed for patch processing originally takes 224 × 224
RGB input images. For the current evaluation, our stimuli were grayscale with pixel
dimensions 1920× 1080. In development, we determined that patch sizes of 224×
224 for our stimuli were too large (e.g. four or more teeth would be in this sized
area). Smaller patches were preferable so that enough information from an entity
is extracted. Therefore, we rescaled the 100 × 100 image patches to the desired
input size for the network, and replicated the one channel image information to
get three channels that can utilize the weights pre-trained on ImageNet [343].

Image patch input size and channels can be adapted for other stimuli or any
other preferred network for the fixation encodings. The takeaway from this image
patch approach is that through only the gaze: 1) we map the image features of
interest in temporal order, and 2) we can extract the semantics from these features.
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Figure 5.9: Matching image patch descriptors are recognized as similar across
stimuli. When three different participants fixate on the left temporo-
mandibular joint, the feature descriptors from DeepScan value them
as similar. In contrast to when these participants fixate elsewhere, e.g.
teeth, roots, etc.

CNN architecture For patch descriptor extraction, we employed a VGG-16 net-
work [342] as implemented in keras and pre-trained on ImageNet.4 Figure 5.8
shows the network: Consisting of five blocks of convolutions, with each block fol-
lowed by rectified linear units (ReLUs) and max-pooling.

Since we are only interested in the features, we omit the fully-connected and
prediction output layers of the model and use the output after max-pooling, which
has 7 × 7 × 512 dimensions, and flatten it to a 1 × 1 × 25088 vector. This feature
description from the final convolutional layer, F(fi), represents the image patch at
the ith fixation fi.

The feature descriptors provide the semantic information for each fixation in
a user’s scanpath and are the equivalent of a symbol representation in the tradi-
tional string-sequence representation. Below, we discuss the changes required in
the alignment algorithm in order to work with alignment scores generated by com-
paring these image features to one another. Figure 5.9 shows an example of how
similar features accross different stimuli can be determined as similar.

We chose the VGG-16 in contrast to a network pre-trained on radiology images
since it generalizes to a variety of tasks and stimuli. Additionally, it is publicly
available and easily integrated for replication purposes. Pre-trained networks for
medical images are often not publicly available due to data sensitivity and protec-

4Using Python 3.6 with GPU compatibility [344].
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tion. Furthermore, any existing architectures for these images are not yet up to par
with the generic image trained architectures. Choosing a network that is trained
for a specific stimulus category, e.g., panoramic radiographs or other x-rays, might
improve results. However, it introduces the risk of limiting data analysis to specific
elements, which is comparable to manual AOI selection. Ultimately, though our
approach is evaluated on medical image expertise, we developed it for generaliz-
abitily in multiple applications.

Local alignment Once we have descriptors for each fixation, we assemble them
as a scanpath. The resulting matrix of image features at each fixation creates a
scanpath matrix. SA = (Ff1 , Ff2 , · · · , FfN ). With this matrix representation, we can
compare it to the matrix representing another scanpath.

For scanpath comparison, we perform local alignment using a variant of the
Smith-Waterman Algorithm. We preferred local alignment scoring over global
alignment due to its ability to find similar subsequences, even if the scanpaths
may otherwise be vary greatly [215]. Moreover, we did not want to enforce strict
global alignment due to different viewing times required by students and experts.
In sequence alignment, the penalty system can have a major effect on values in the
scoring matrix, which effects the similarity score [206]. Our scoring choice prior-
itizes finding long rather than short similar subsequences by accumulating scores.
Equation 5.1 details the scoring system used for the current evaluation:

Mij = max



Mi−1,j−1 + c−
∑
i,j

|A:Fj
−B:Fi

|, Match

Mi,j−1 − gap, Gap in A

Mi−1,j − gap, Gap in B

0 Stop Criteria.

(5.1)

Where M is the scoring matrix of size (n + 1) × (m + 1) for two scanpaths A
and B with n and m fixations respectively. Element Mi,j takes the maximum value
based on if there is a match between the values at index j of scanpath A and index
i of scanpath B. The original algorithm scores matches as the score value added
to the value at the previous indices: Mi−1,j−1 + score(aj, bi). Then, if there is no
match, it determines whether the value of a gap penalty (gap) in either scanpath,
or no similarity (0) are more optimal for the score.

The interesting part of our approach is contained in the calculation of the match
value. Since it is highly unlikely that two features will be exactly the same, we
cannot explicitly match or mismatch. Therefore, we calculate this value by taking
the sum of absolute differences in feature descriptor j of scanpath A and descrip-
tor i of scanpath B as shown in the first line of equation 5.1. This is simple to
implement and cheap to compute, but other metrics such as cosine or Euclidean
distance could also be used. This procedure leads to a dissimilarity value between
the image patches. The more dissimilar the image patches, the larger the value.
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Figure 5.10: Scoring matrix of the local alignment. Backtracing from the index
with the highest value (yellow) will give you the optimal local align-
ment of two scanpaths.

In order to evaluate the current image patch comparison to the stimuli con-
text, we subtract the dissimilarity value from a constant c. We calculated c in
equation 5.1 by averaging the sum of the differences for all features between all
scanpaths of one random image in the dataset. Therefore, c was 21, 049 in the
evaluation of our proposed approach. This constant affects highly similar image
patches positively, but highly dissimilar image patches are penalized negatively
with the same weight. Meaning it functions similar to a match/mismatch thresh-
old. Additionally, we set our gap penalty (lines 2 and 3 in equation 5.1) to 42, 000
to highly penalize gaps, therefore almost double c.

This choice of c makes the algorithm consider about half of the image patches
relatively dissimilar to each other. Furthermore, gaps are penalized quite strongly,
resulting in compact alignments that are not drastically influenced by large differ-
ences in sequence lengths. Figure 5.10 shows an example of the similarity matrix
created from the local alignment performed for two scanpaths. The maximum
value in the matrix is the similarity score [214]. In figure 5.10, the highest yellow
color indicates the final similarity score and backtracing from this index till 0 will
give the optimal local alignment of both sequences.

The resulting similarity score for the two scanpaths is max(M). Then, we nor-
malize this score based on the length of the shorter scanpath, thus:

similarity =
max(M)

min (|SA|, |SB|)
. (5.2)
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We compared the performance of our DeepScan method to the Smith-Waterman
local alignment of hand-labeled semantic AOIs (see top example in figure 3.3),
which serves as the benchmark for image context. These AOIs indicate specific
anatomical structures and regions across dental radiographs, producing paramount
semantic information that can be represented in a scanpath. For scoring the se-
mantic scanpath comparisons, we used a simple, standard scoring system: 1 for
matches, −1 for mismatches, and −2 for gaps.

For compatibility, we chose to evaluate gaze data from the first 45 seconds of
each student participant, in line with the experts’ total viewing time. Additionally,
our model is only evaluated on gaze data for the 10 OPTs that both groups viewed.
Gaze data was lost for two expert participants due to software failure. Five partic-
ipants were also excluded due to having high data loss, leaving 25 experts and 54
students for the final analysis. The resulting total for all participants for all images
was 733 scanpaths.

5.5.2 Results

We performed local alignment of the scanpath vectors with patch features for each
participant for all images. In order to get the scanpath behavior representative of
each participant, we averaged a participants’ similarity output for all images. Fig-
ure 5.11 shows the similarity scores from DeepScan of each participants’ scanpath
behavior over the images viewed in pairwise comparison to other participants. The
diagonal of the matrix indicates the highest similarity value, which is a participants’
gaze behavior compared to his or herself.

From the similarity matrix, a trend is apparent where experts (labeled green in
figure 5.11) show higher similarity scores among each other, as visible by the more
yellow values. Conversely, students’ gaze behavior shows less similarity, especially
when compared to experts.

Hierarchical clustering We clustered the similarity scores of all participants us-
ing agglomerative hierarchical clustering [242], [245], [246]. As the similarity
matrix can easily be inverted to a distance matrix, the unsupervised clustering ap-
proach was straightforward; however, one could introduce additional weighting
factors or more complex classification methods on top as well. This approach eval-
uates the distance between data points and links those clusters closer in distance
until one cluster remains [245]. Partitioning the clusters is then determined by the
linkage distance. We used Ward’s [245] method for proximity definition, which
minimizes the sum of the squared distances of points from the cluster centroid.

Average gaze behavior of each subject For the scores of each student and ex-
pert summed over all images, the resulting dendrogram (2-dimensional tree view
of the nested clusters) is shown on the y-axis in figure 5.11.
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Figure 5.11: Similarity matrix of subjects’ average scanpath behavior. Purple labels
indicate students’ gaze behavior. Green labels indicate experts’ gaze
behavior. Values closer to yellow indicate higher similarity, where
the diagonal is a participant compared against themselves. Values
shown on the diagonal are rescaled relative to values off-diagonal
solely for perceivability. On the y-axis is the resulting clustering of the
dendrogram, which recognized 2 clusters. One cluster (purple) with
mainly students and the other cluster (green) with mainly experts.
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Table 5.2: Performance of linkage clustering for our approach (Feature) and Se-
mantic AOIs as measured by the True Positive Rate (TPR). Two main
clusters were found based upon the gaze behavior for both approaches.

Student Expert Accuracy
Feature Semantic Feature Semantic Feature Semantic

Student 50 44 1 1
Expert 4 10 24 24

TPR 92.5 % 81.5 % 96.0 % 96.0 % 93.7 % 86.06 %

The clustering seen in figure 5.11 recognizes two main clusters evident in the
gaze behavior with the majority of students in one cluster (purple cluster, purple
labels) and the majority of experts (green cluster, green labels) in the other. Ta-
ble 5.2 calculates the true positive rate (TPR) when utilizing the clustering as a
classification for both students and experts as well as the overall accuracy. We
achieved 93.7 % accuracy. We also found two clusters evident in the traditional
local alignment with manual AOIs; however, more students were misplaced in the
expert cluster (as seen in table 5.2), resulting in an overall accuracy of 86 %.

Gaze behavior on the image level We then ran the hierarchical clustering for
participants’ gaze at the image level (over all 733 datasets and not the average
similarities for each participant as above). The dendrogram also recognized two
clusters, therefore, we calculated the number of experts in one cluster and the
number of students in the other. The achieved accuracy for our approach was
68.62 %: Experts had 85.65 % TPR and students had 61.18 % TPR. The achieved
accuracy for the traditional, semantic approach was 64.39 %: Experts had 51.76 %
TPR and students had 93.27 % TPR. This slight dip in performance could be at-
tributed to pathological differences in the stimuli. Previous literature has also
found that gaze behavior of expert and novice dentists can be highly stimulus de-
pendent, where dental radiographs considered easy to interpret evoke similar gaze
behavior in experts and novices [65], [149].

Cross-image classi�cation To further see whether we could predict classifica-
tion performance on an image level, we performed a leave one subject and one
image out cross-validation using the similarity scores from DeepScan. We per-
formed classification to 1) see whether we could predict a participant’s expertise
from their scanpath on a new image, i.e. not contained in the compared set. 2) to
confirm that certain stimuli may affect the similarities more than others. For each
subject, we ran a 3-Nearest Neighbor classifier, trained on the remaining subjects
and images. Table 5.3 shows the performance for each image. Here, it is clear
that for some images, distinguishing expert and student scanpaths becomes more
difficult. For instance, image 1 shows a heavy tendency to classify all participants’
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Table 5.3: Performance of kNN classifier when one image is left out and each par-
ticipants’ expertise for that image is predicted. Note that chance level
is not 50 %, therefore we provide Cohen’s Kappa (κ) as an indicator of
performance, with bold text indicating fair performance.

Expert TPR Student TPR Accuracy
Feature Semantic Feature Semantic Feature Semantic

Chance: 32 % 68 % Overall κ Overall κ

Image 1 100.0 % 75.0 % 20.4 % 76.6 % 44.9 % 0.14 78.2 % 0.52
Image 2 59.1 % 68.2 % 83.3 % 85.4 % 75.7 % 0.43 80.0 % 0.54
Image 3 28.6 % 66.7 % 93.5 % 80.4 % 73.1 % 0.26 76.1 % 0.46
Image 4 52.4 % 57.1 % 89.8 % 83.7 % 78.6 % 0.45 75.7 % 0.41
Image 5 76.2 % 53.4 % 68.6 % 88.2 % 70.8 % 0.39 77.8 % 0.43
Image 6 66.7 % 75.0 % 67.9 % 81.1 % 65.5 % 0.31 79.2 % 0.54
Image 7 60.9 % 30.4 % 86.5 % 90.4 % 78.7 % 0.49 72.0 % 0.24
Image 8 73.9 % 91.3 % 88.2 % 68.6 % 83.8 % 0.62 75.7 % 0.51
Image 9 45.8 % 58.3 % 92.6 % 96.3 % 78.2 % 0.43 84.6 % 0.60
Image 10 30.0 % 80.0 % 96.2 % 65.4 % 77.8 % 0.32 69.4 % 0.37

Overall 60.1 % 65.5 % 78.2 % 82 % 72.7 % 0.37 76.9 % 0.46

scanpaths for that image as experts, and image 3 shows a tendency to over-classify
as students. Nevertheless, five images allowed us to determine expertise of a new
subject on a new stimulus that was not contained in the data we used for the clas-
sification. In particular, image 8 shows the highest accuracy in classifying level
of expertise, meaning this OPT and its semantics can possibly trigger experts to
inspect the image in a distinctive way.

The cross-validation for the traditional local alignment scoring for the scanpaths
with manual AOIs, showed better performance on the image level than DeepScan,
and slightly better overall (77 % versus 73 % respectively). Therefore, it is possible
that we cannot yet utilize the full potential of semantic encoding using the feature
approach. However, given that DeepScan is purely data driven, its results are
comparable and lessens the tedious process of manual AOI labeling. Retraining
the network on OPT data might help the encoding come closer to manually-defined
semantic labels.

Additionally, we sorted the similarity scores of all scanpaths from DeepScan to
isolate those that expose especially high similarity values to many other scanpaths.
We hoped to extract archetype-scanpaths this way. The histogram in figure 5.12a
shows that two expert scanpaths had the highest similarity scores to most other
scanpaths. Interestingly enough, both these scanpaths and a number of the other
high similarity scanpaths are for image 1. Thus, from the local alignment similarity,
certain scanpaths from image 1 (as seen in figure 5.12a) offer highly similar sub-
sequences to other scanpaths regardless of image. Image 1 was one of the stimuli
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(a) The top scanpaths who have the
highest frequencies of similarities to
other scanpaths.

(b) The two experts’ scanpaths on image 1
with highly similar scanpaths to other
subjects.

Figure 5.12: The two experts’ scanpaths (illustrated by their image patches in blue
and green) with the most highest similarities to each other and many
other subjects’ scanpaths based on the data in 5.12a. In 5.12a, expert
scanpaths are in green and students’ are in red. The majority of theses
scanpaths are for image 1, as indicated by the blue text

that made a distinction between expertise levels difficult to discern. It could rep-
resent a standard scanpath for checking OPTs that abstracts over special attributes
of individual stimuli.

5.5.3 Expert dentists exhibit highly similar attention to

features

We were able to successfully extract similarities in scanpath behaviors between
experts as well as their difference from student gaze behavior while interpreting
panoramic dental radiographs. Our developed scanpath comparison approach uses
temporal scanpath information to extract image features at the fixation level. The
resulting similarity comparison of scanpaths, therefore, incorporates this image
information into the traditional approach of sequence alignment to detect patterns
between the behaviors.

From traditional local alignment techniques using image features, we found that
experts showed highly similar behavior to each other and, as a result were more
likely to be clustered together. Moreover, students’ similarity scores indicated that
their scanpaths were not highly similar to those of experts. In addition, there
was no distinct homogeneity among students’ similarity scores (see figure 5.13).
One possible reason for their low similarity to one another could be that they
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Scanpath A

Scanpath B

Time Viewing

...

...

Figure 5.13: Two relatively dissimilar scanpaths from students. The local align-
ment finds the optimal matching subsequence starting in scanpath A
at the twentieth fixation (far left top) and in scanpath B at the fiftieth
fixation (far left bottom).

are incoming students with some conceptual background; however, they had no
training on radiograph interpretation. Previous research has found that students
evoke more systematic search strategies after training, resulting in more similar
gaze behaviors [28], [158]. Additionally, the heterogeneity of background and
training can affect scanpath similarity [345]. Students potentially have varying
levels of conceptual knowledge or familiarity with radiographs before entering
their first year of dental studies.

Our algorithm was able to accurately classify unseen scanpaths given scanpaths
from other participants and other images. Although, we found that, depending
on the image, it could be easier or more difficult to differentiate levels of expertise
from the scanpath similarities. This finding is, however, in alignment with previous
studies specifically on dentists and dental radiograph examination. For instance,
[149] found that radiographs defined as easy to interpret offered no differences
in the gaze behavior of experts and novices. We [3] also found that even among
experts some images evoked highly differing gaze behavior to achieve accurate
anomaly detection.

With the system at hand, we could classify expertise of dental students in an
adaptive feedback setting from viewing a single stimulus (with decent accuracy),
even if the stimulus itself is an arbitrary OPT that is unknown to the classifier.
This could be used to guide students through the learning process and to adapt
the difficulty of stimulus material to their current knowledge level. When view-
ing multiple stimuli (which students do in the current mass practice approach),
classification accuracy can be increased.
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Furthermore, we observed that some stimuli allowed for a classification of ex-
pertise, while others did not. We could utilize this information as a hint to which
stimuli are likely to induce a training effect and to differentiate from stimuli that
are too easy (for the current student).

We designed DeepScan to handle image variability. One image feature descrip-
tor of a patch in one image can match to similar patches in other images (see fig-
ure 5.9); This way, scanpaths can be more effectively compared cross-stimuli, but
this process also replaces a manual AOI-annotation. By the assumption that simi-
lar semantic meaning in a visual task corresponds to similar looking features in the
stimulus, we have introduced a notion of stimulus semantics into the automated
scanpath interpretation. A similar workflow could be used to compare data where
the annotation of dynamic AOIs is typically unfeasible, e.g., recordings of mobile
eye-tracking devices to each other. Furthermore, we do not restrict the algorithm
to individual annotated AOIs, but represent each fixation by its feature descriptor,
no matter whether a data analyst would deem it relevant for the analysis at hand
or not.

5.6 Toward developing gaze-based interventions

In this work, we focused on realtime gaze-contingent feedback that visualizes al-
ready observed regions and incorporates more information from the periphery.
Additionally, we introduced a novel software system for performing eye tracking
experiments, which allows for realtime feedback to the subject. We successfully
validated the implementation in a visual search task study. The current system was
integrated into an already existing eye-tracking analysis platform – EyeTrace [346].

5.6.1 Gaze-contingent software

Software The Experimenter plug-in for EyeTrace [346] was developed for creat-
ing and performing remote eye-tracking experiments. It offers the following capa-
bilities that are controllable in the designer widget as illustrated in Figure 5.14:

• Create and modify the experiment design where each index block is highly
customizable 1© & 2©.

• Import and export experiment designs as CSV file 2©.

• Record subject data together with name, group and dominant eye 3©.

• Select the eye tracker to be used 4©.

• Select an interruption key 5©.

• Start/cancel the experiment run 5©.
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5.6 Toward developing gaze-based interventions

Figure 5.14: Designer Widget GUI. Here, experiments can be designed, and man-
aged. The workflow of the experiment is organized (1) and can be
modified (2) and each participant’s data is defined (3). For each ex-
periment, an eye tracker is selected (4) as well as a key for interrup-
tion (5).

Additionally, a researcher can manually organize an experiment design, offering
customization of stimuli, time of presentation, gazefeedback, and keypress inter-
ruptions. These experimental designs can be exported and saved as a CSV file, for
additional data collection. The ability to import experiment designs in CSV file
format allows for the option of auto-generating randomized experiment designs
with a simple script in any programming language with CSV parsing libraries or
text editor.

During an experiment, the stimuli and gaze-contingent feedback are visualized
in the presenter widget. This widget handles any pre-defined presentation time-
outs, our key-event triggers to present a new stimuli.

Gaze-contingent feedback For the realtime, gaze-contingent feedback, the user’s
gaze is visualized on the screen as he or she is performing a task. In order to
achieve low and relatively constant response times from the feedback system, in-
termediate results are stored in a cache. Then, the system only has to process new
gaze data when it is repeatedly called. Triggered by a timer, every 7 ms (approxi-
mately 144 Hz), the screen drawing method of the presenter widget gets called to
update the screen content. This trigger calls the currently active realtime feedback
implementation to draw over the stimulus.

Two feedback algorithms were implemented, plus the default ‘no feedback’ con-
dition. First, the ‘cover’ feedback occludes the user’s gaze coordinates on the stim-
ulus with opaque circles as illustrated in figure 5.15a. Second, the ‘uncover’ feed-
back unoccludes a semitransparent cover in a similar manner to the former condi-
tion as illustrated in figure 5.15b. Essentially, this feedback is the complement of
the former applied to the mask overlay. For both conditions, there is no decay of
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Figure 5.15: Screenshot of an experiment trial, showcasing the ‘cover’ (a) and ‘un-
cover’ (b) feedback condition. Stimulus: Ilya Repin, “Unexpected Vis-
itors”, 1884-1888. Oil on canvas. public domain https://commons.

wikimedia.org/wiki/.

feedback for older gaze points.
Both feedback conditions use a white mask-like image overlayed over the origi-

nal stimuli, and the feedback effects the masks’ alpha channel, meaning its opacity
is changed. For each event where the feedback class is called, the list of new gaze
points is run through and circles are drawn on the mask overlay for each new gaze
point coordinate.

In both feedback conditions, the mask is either transparent (for covered) or
semi-transparent (for uncovered). The alpha channel on this map is then changed
based on the gaze coordinates. The compositing method adds or subtracts the
circle’s alpha values to the existing mask, corresponding to gaze coordinates. This
creates the effect of decreasing or increasing transparency the longer the subject
looks at a certain spot. However, a lower bound threshold is given to the circle’s
alpha value to prevent any part of the stimulus from becoming invisible. Each
circle consists of a radial gradient, projecting outwards from the circle’s center to
its edge. This effect makes the feedback appear smoother, removing distracting,
sharp edges (see figure 5.15). The compositing method updates the mask with
new gaze points each time the trigger timer event takes place, then, the mask gets
drawn over the stimulus.

Gaze-contingency in a visual search paradigm The visual search task was
performed with images consisting of either 80 distractors (target absent) or 79
distractors plus the target item (target present). In total, 100 images were gener-
ated.5 Order of stimuli presentation was randomized for each participant. A total

5The images had equal distribution of color and shape of the target item, and its absence/presence.
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5.6 Toward developing gaze-based interventions

of 18 participants (17 university students; five wore glasses) took part. They were
positioned roughly 60 cm away from the screen and gaze position was collected
using an EyeTribe commercial eye tracker. A 9-point calibration was performed
using the EyeTribe’s calibration software. Following the experiment, participants
filled out a self-report regarding perceived performance and experience.

Generally, it took subjects longer to correctly decide if a target was absent, than
it took them to decide if a target was present. The difference was highly significant;
this experimental result reproduces a well documented effect of target presence or
absence on reaction time [347], [348].

Concerning how the intervention influenced subject behavior, we can see that
even with our rather simple feedback methods we were able to induce a change
in subjects. There is more periphery incorporated, which is evident by longer sac-
cades for both the covering and uncovering interventions. However, only the cover
large condition, where a semi-transparent circle with a 200 pixel diameter was
overlayed on the gaze coordinates, increased reaction times when the target was
accurately determined as absent. There was also a trend for less fixations when
determining the target was absent for both cover and uncover (where the circle un-
covers a semi-transparent overlay) large feedback conditions, though significantly
less fixations were found only in the cover small (100 pixel diameter) feedback
condition. Therefore, the realtime, gaze-based feedback algorithms produced an
effect on the gaze behavior in the visual search task.

Interestingly enough, self-reports from the participants did not indicate that the
feedback helped or improved their performance. In contrast, their reaction times,
as well as their eye movement differences, showed that gaze feedback indeed af-
fected their behavior compared to no gaze feedback. Participants also reported
that none of the feedback conditions were distracting in any way. Therefore, the
gaze feedback system we developed appears to be unobtrusive, yet effective.

A large cover feedback could be a more effective gaze contingency model as
it decreased reaction time for when a target was correctly determined as absent.
However, overall correct detection was extremely high at 96 %. Future work into
effective gaze modeling could look into more complex visual search tasks to see
whether gaze modeling improves performance.

5.6.2 Towards attention awareness: Gaze-aware subtle

feedback intervention

Building off the aforementioned framework, we combined domains that have pre-
viously run in parallel: Expert gaze modeling for learning and user-attention aware-
ness. We designed a framework for gaze guiding based on expert viewing behavior
of dental radiographs while recognizing a user’s realtime gaze. Our interests are
two-fold: 1) whether we can effectively guide a user’s gaze to relevant regions of
an image without occluding any information and 2) whether expert gaze guiding
can improve perceptibility of anomaly features for non-experts. We present an ex-
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Two Experts Attention Expert's Simplified Scanpath

1

2

Figure 5.16: Gaze guiding through experts’ attention. AOIs are calculated from
the heatmap. Then, the simplified transitional behavior becomes the
order of presentation.

ploratory evaluation of the intervention design with naive participants, accessing
its efficacy in guiding the gaze unobtrusively as well as in providing usability feed-
back. Additionally, we look at detected anomaly features; however, we are aware
that diagnostic performance would be more appropriately evaluated with students
and advanced trainees, who have a more appropriate skill set for pathology inter-
pretation.

The expert gaze model We employ subtle gaze direction [349] to present ex-
pert attention while examining panoramic dental radiographs. Our method does
not occlude relevant areas in the foveal vision, as it recognizes when attention is
directed towards the area. We could successfully guide the gaze to relevant image
features and promoted further inspection. Our findings with naive participants
showed that the gaze feedback could not develop successful dental radiograph di-
agnosis, but elicited gaze transitions similar to the expert model. Participants also
felt more confident and stated that the framework helped them to properly inspect
radiographs. This aspect suggests further research to promote SGD as a suitable
way to illustrate expert gaze behavior in learning interventions with students or
advanced trainees.

To create the AOIs, we chose gaze data from two experts from a previous data
collection with expert OPT inspection. Experts from this data collection had an
average of 10 years of experience. Through similarity clustering, two experts were
found to have scanpaths highly similar to all other experts’ scanpath (see [5] for
further details); their data was chosen to develop the expert model. From their
heatmap, areas with higher concentration of gaze are segmented as illustrated
in the right image in figure 5.16. We chose the scanpath of the more accurate
(higher detected anomalies) of the two experts to provide transitional behavior.
We preferred a simplified version of the transition, denoting the first glance into
an AOI and not including revisits, since it was determined that revisits would be
too hard to follow. An example of a simplified scanpath is also found in figure 5.16:
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...

AOI Queue

Current AOI with respect to Gaze

Dequeue, 
Take next AOI 

Figure 5.17: Illustration of feedback animation. When the gaze attention (red
cross-hair) is not directed towards the AOI, it pops up as a semi-
translucent yellow circle (left image). When the gaze attention goes
towards or is in the AOI, it presents the feedback as a translucent
yellow ring (right image).

The first blue AOI is looked at (1) then transitions to four other AOIs were made
before going back to the first AOI, we omit the revisit and set the next transition
to the yellow AOI (2). Without revisits, scanpaths ranged from 9 to 23 transitions,
and with revisits, they ranged from 88 to 175 transitions.

Software We incorporated the AOIs and the ability to recognize attention to-
wards them. Our method is based off of the subtle gaze direction (SGD) method
from [349]. We added a short delay of 5 seconds, before the first AOI pops up, so
participants could scan the image briefly.

AOIs for a certain feedback are placed into a queue. Upon an animation timer
timeout, the current AOI is dequed and painted over the stimulus. For this work,
we set the timer to timeout every 3.8 seconds so participants would not feel
rushed, as they were non-experts. The AOI is initially illustrated as yellow (RGB :
252, 252, 103) with a translucent radial gradient (left image in figure 5.17). We
chose this color as we felt it would be salient against our grayscale stimuli.

In order to avoid occlusion of important image features, we repaint the AOI
area with a translucent yellow ring (right image in figure 5.17), when our SGD
implementation detects the gaze angle as going towards the AOI. Where the angle,
α, is calculated as follows:

α = cos−1

( −→υ · −→t
|−→υ | · |−→t |

)
, (5.3)

where −→υ indicates the vector from the previous gaze point to the current gaze
point and

−→
t indicates the vector from the previous gaze point to the target AOI.

We calculate α five times using equation 5.3: with one
−→
t to center coordinates of

the AOI and then
−→
t for each of the corner coordinates of its bounding box. We
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calculate the previous gaze as the average of the last two gaze coordinates stored
in a buffer. We take the minimum of the five angles and subtract it from 360° if it
is larger than 180°.

Then, if α is between 0 and 10°, the AOI updates from the circle to the ring.
This threshold was used in [349], and was determined stable when testing our
implementation. For gaze input, we used the SMI RED250 remote eye tracker
running at 60Hz
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(c) Gaze Behavior with Intervention

Figure 5.18: Performance as measured by the F1 Score (a) overall images (b) com-
paring the intervention of expert gaze feedback against feedback, and
(c) the gaze behavior with respect to feedback or no feedback. Means
(circles) and standard errors (tails) are plotted for all figures.

Performance, gaze, and attention We calculated the sensitivity and precision
of the participants over all images, then calculated the harmonic mean (F1 score)
between the metrics. As was expected with non experts, performance in OPT
anomaly detection was relatively low: The average F1 score overall was M =
28.42%, SD = 8.45. The distribution is shown in figure 5.18a.

To see if there were any effects of the expert gaze feedback intervention, we
ran a repeated measures t-test on both the performance and the gaze behavior for
“feedback” versus “no feedback” conditions. No major effect was found for the
intervention on performance (t(26) = −2.021, p = 0.054), though performance
with the feedback was slightly better (M = 30.80%, SD = 8.23) than without it
(M = 26.85%, SD = 10.97). Figure 5.18b shows the performance with respect to
the intervention. The low sample size may explain the high variance in the gaze
behavior for both the intervention and no intervention condition. Further research
with an appropriate sample size to observe a significant difference is necessary.

However, the intervention had a stronger effect on the gaze behavior. Average
fixation durations were higher for the feedback condition (M = 443.03, SD =
78.76) compared to the no feedback condition (M = 400.96ms, SD = 60.29,
t(26) = −4.704, p < 0.0001). Additionally, the average fixation count for the
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Figure 5.19: Attention to AOIs as measured by the AOI glance proportion (left) and
the scanpath similarity (Levenshtein distance) to the expert model
(right) with respect to feedback or no feedback.

feedback condition was lower (M = 173.0, SD = 24.15) than the no feedback
condition (M = 186.64, SD = 21.41, t(26) = 4.502, p = 0.00012). Therefore, when
presented with the expert gaze model, participants exhibited fewer fixations, but
longer fixation durations. This behavior could be indicative of more information
processing and, as a result, associated with novices [24], [133], [137], [158].

To assess whether the intervention successfully guided the gaze behavior, we
looked at subjects’ gaze behavior in relation to the AOIs as shown in figure 5.19.
We ran repeated measures t-test for AOI glances and transition similarity. The gaze
model elicited a higher proportion of AOI glances (M = 0.8359, SD = 0.0935)
than without the model (M = 0.7060, SD = 0.0863, t(26) = −8.165, p < 0.0001).
Consequently, there was more attention to relevant areas of the image.

We looked at the effect of the intervention on the similarity of subjects’ AOI tran-
sitions to the expert’s transition. Similarity was calculated with the Levenshtein
distance [208] for subjects’ scanpaths compared to the expert’s scanpath and nor-
malized to the length of the longest scanpath. We found that with the feedback,
subjects had significantly more similarity to the expert (M = 0.7203,SD = 0.072)
than without the feedback (M = 0.7937,SD = 0.0416, t(26) = 4.791, p < 0.0001).
Figure 5.20 shows subjects’ transitional information for one image with (middle)
and without (right) the intervention compared to the expert’s gaze transitions rel-
ative to the AOIs (Left). Here, the similarity of the subjects who received the gaze
feedback was closer to the expert’s gaze behavior than the subjects who received
no feedback compared to the expert: Note the transitions to (lines originating) and
from (lines landing) AOI 5 (burgundy).

User response Regarding usability, we asked subjects to fill out a short question-
naire about the task and the gaze feedback. Average responses for the questions are
plotted in figure 5.21. Overall, the subjects found the task difficult and were not
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Figure 5.20: Example of AOI transitions for one image. Where the left most di-
agram is the expert’s transitional information and the middle is the
transitional information of subjects who received the gaze interven-
tion and the right most is the transitional information of subjects who
received no gaze intervention .

confident in their performance. This could be expected as the nature of anomalies
in these images are likely to be very subtle to the untrained eye. Moreover, they
shared overall positive feedback regarding the intervention, finding it beneficial
and depending on it to complete the task. Some participants made informal com-
ments to the researchers that, after a few images with interventions, they started
to recognize features (e.g. dark shadows in the gums), which they felt could be
indicative of something abnormal (peridontitis). They did, however, find the task a
bit too long and slightly rushed. These responses will be helpful for future testing
and system development.

1 1.5 2 2.5 3 3.5 4 4.5 4.55

The overall task was...

The intervention was...

I relied on the intervention...

I found the intervention...

The intervention simplifies the task...

I performed better...

Hard

Exciting

Complex

Too long

Effective

Helpful

Rushed

Always

Helpful

Pleasant

Agree

With Intervention

Subject Responses

Figure 5.21: Average responses for questionnaire regarding the task and the gaze
intervention. The task was reported as difficult for the non-experts.
They did report that the feedback was helpful and they used it.
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Participants reported feeling more confident with the gaze intervention and re-
lied on it to complete the task. They successfully followed the expert gaze model
and their AOI transitional behavior was more similar to the expert’s. Although
they lacked the conceptual knowledge that facilitates the proper interpretation of
relevant features. Previous research has also indicated that search pattern training
draws attention to relevant areas, but does not affect performance [158], [174],
[350]. Waite et al. [51] highlights the reciprocity of perception and cognition in
diagnostic performance. For instance, initial feature localization, then conceptual
knowledge, facilitates the decision that this feature needs further inspection (e.g.
difference in contrast, and area prone to anomalies, etc.) and whether it is recog-
nized as a specific pathology or can be ruled out.

Implications for novice training

Dental radiographs, as with all medical images, are highly complex in nature and
require some form of conceptual knowledge to interpret reliably. Presenting only
ten OPTs may not have been enough for a significant training effect. Consider-
ing the low number of OPTs, naive participants seemed to recognize features the
intervention highlighted in later images, as reported. To achieve improved perfor-
mance in naive observers, [351] used around 800 images to improve hip fracture
detection. Further research is needed that will address the optimal number of
images required to improve interpretation without inducing fatigue and still pro-
viding ample time to interact with the gaze model. In our study, we were limited to
investigating short term effects of training naive participants. A longitudinal study
regarding the gaze-aware feedback system on naive subjects’ or novices’ learning
over time would be an interesting aspect for further research.

Moreover, we show a potentially effective learning intervention for either novices
or more advanced dentists. Students undergo intense studying and exposure to
get to the level of professional expertise that leads to success later in their ca-
reers. More effective learning interventions can smooth a student’s transition to
residency and professional environments by minimizing the knowledge gap be-
tween each stage. With better preparation, less professional resources need to be
expended on supervising incoming residents and early professionals. Even then,
expert is never a final state, experts should always be open to further learning
and improvement. Generally, it has been found that experts and more advanced
trainees greatly benefit from gaze interventions [28], [174]. Our implementation
of the SGD with expert AOIs has the potential to be catered to advanced learners,
in hopes of further fine-tuning established skills.
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Talent is a pursued

interest . . . Anything that

you're willing to practice, you

can do

�Bob Ross

Research will not find the key to make someone an expert overnight. Expert skills
cannot simply be just handed to anyone, rather they need to be developed through
“rich instrumental experiences” [46]. However, research on what makes experts
excel in their domain specific tasks offers insight for learning interventions. In
medical education, research in expert-novice differences has already produced
problem-based learning, which supplements conventional coursework [352]–[354].
Even the study of expert eye movements and the creation of eye movement models
have started to reveal the potential for expert gaze research to support conven-
tional teaching [174], [176], [350].

The tracking of expert gaze behavior creates an awareness of their cognitive pro-
cessing and decision making. This thesis has contributed towards this awareness by
investigating expert glance behavior and the recognition of anomalies [3], which
supports previous work on false negative and attention [58]. Furthering expert de-
cision making, fresh insight is given into the versatility of expert cognitive process-
ing when inspecting varying anomalies [4]. Moving towards advanced scanpath
analysis from a data-driven perspective, subtle differences in student scanpaths
due to targeted training are distinguished with conventional scanpath classifica-
tion approaches. Moreover, an innovative classification method to recognize atten-
tion to semantic features rather than an image shows robust distinction between
experts and novices in [5]. This work paves the way for classifying expertise in
an adaptive feedback setting, even for unseen stimuli. Working towards intelligent
tutoring systems that use gaze as indicator of user perception, a framework was
developed in [2] and then later evaluated with an expert gaze model [6]. This
system shows high usability and effective attention guiding, without occlusion of
relevant features.

Understanding the scanpaths in an effort to find patterns determinant of a devel-
opmental level can ultimately build an adequate representation of eye movements
for the complete learning process. Therefore, a model initially should recognize
gaze patterns (i.e. subsequences) that are characteristic for a dentist at a respective
expertise level. Then, building off accurate recognition, scanpath components can
further be clustered based on patterns representative to key phases in effective vi-
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Figure 6.1: Example of an obvious and
highly salient anomaly (cir-
cled in red) that experts and
novices alike recognize. Even
a layman could determine
this tooth is not properly po-
sitioned. Regardless of exper-
tise level, this pathology was
often the first fixated.

sual search, i.e. systematic, comparative or explorative. Such patterns are likely to
contain highly discriminative information, which are not bound to e.g. one specific
OPT, rather that can be linked to the specific semantics of a certain structure or
anomaly. This thesis provides a substantial contribution towards expertise cogni-
tion through the gaze and robust scanpath classification towards gaze augmented
intelligent tutoring.

Furthermore, this thesis and the observations reported herein shows the use-
fulness of gaze and robust scanpath classification and its application for gaze-
augmented tutoring in training of expertise cognition. It approaches online recog-
nition of expert or novice, and even more fine-grained sub-divisions within a group.
Not only can the findings of this work be targeted toward students, but also how
advanced students, upcoming professionals and even experts can be affected. For
instance, interventions could be designed to train more successful strategies and
experts. One interesting question whether a manifested and observed strategy in
an expert is pliable and open for change, to what degree can we improve expertise
by building on that strategy.

Research involving data-driven approaches for bias recognition can highly ben-
efit from the gaze. Already, understanding bias from data has major contributions
social and economic factors can contribute to decision making in AI [355]. There-
fore, another further implication of this research is revealing bias in expert de-
cision making through the gaze. The cognitive processes during expert decision
making (pupil change adaptability and glance frequency during anomaly inves-
tigation) coupled with specific scanpath strategies can hint at expert bias. Gaze
literature has shown that although experts generally attend less to salient features,
they still recognize these obvious, highly salient anomalies such as the one in fig-
ure 6.1. Psychologically-based research has already started to uncover expert bias
in their investigative processes. One area recognizes a phenomenon known as sat-
isfaction of search, where they successfully recognize an anomaly thus terminate
any further investigation [356]–[359]. For instance, one interesting study found
experts radiologist asked to detect lung-nodules did not recognize or even fixate
on a gorilla illustrated onto the radiograph [360]. Conversely, hindsight bias in
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expert radiologists can lead them to more easily recognize previously overlooked
anomalies [361]. Expert specialty has also shown to reflect bias in diagnostic hy-
potheses [362]. A cognitive model was developed in [363] for bias in diagnostic
accuracy based on expert and novice pathologists, where a speed-accuracy trade-
off as well as prior expectation were evident in the model. Experts expected to
receive slides already viewed by a technician or resident, thus a pathology would
be present [363]. One benefit of using expert gaze for bias recognition could be
misdetections. For instance, the exact interplay between highly salient anomalies
and specialization can affect the global search of a radiograph, leading to over-
looking a more subtle anomaly not generally of interest to said specialist though
still problematic. Therefore, it is worth further investigation into how the gaze
can represent expert bias, which can offer better assessment of the quality of the
diagnosis.
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Appendix

The following publications are the contributions detailed in chapter 5 and ap-
pended in chronologial order from earliest to most recent. The publications with
supplementary material have this material included after the respective last page.
All publication articles appended are in their final publicized form except for the
last article, Towards expert gaze modeling and recognition of a user’s attention in
realtime. At the time of this thesis, this article was accepted at a workshop as part
of the KES conference, and had not yet been offically published. All published
articles appendend, partial or complete, have permission to be included in this
dissertation.
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ABSTRACT
A popular topic in eye tracking is the difference between novices
and experts and their domain-specific eye movement behaviors.
However, very little is researched regarding how expertise develops,
and more specifically, the developmental stages of eye movement
behaviors. Our work compares the scanpaths of five semesters of
dental students viewing orthopantomograms (OPTs) with classifiers
to distinguish sixth semester through tenth semester students. We
used the analysis algorithm SubsMatch 2.0 and the Needleman-
Wunsch algorithm. Overall, both classifiers were able distinguish
the stages of expertise in medical image reading above chance level.
Specifically, it was able to accurately determine sixth semester
students with no prior training as well as sixth semester students
after training. Ultimately, using scanpath models to recognize gaze
patterns characteristic of learning stages, we can provide more
adaptive, gaze-based training for students.
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1 INTRODUCTION
Experts ranging from Olympic athletes and chess players to sur-
geons, doctors, and teachers are often characterized by their profi-
cient abilities. Their skills are built over time, through practice and
developing the knowledge that accompanies their expertise. Not
only does expertise relate to performance, but also eye movement
behavior [Gegenfurtner et al. 2011]. Here, it has been consistently
found that differences between experts’ and novices’ task related
eye movements are indeed apparent and can be reflective of per-
formance [Eivazi et al. 2017; Gegenfurtner et al. 2011; Kübler et al.
2015; Moran et al. 2002; Reingold et al. 2001; Van der Gijp et al.
2017]. Conventionally, most of the expertise literature focuses on
this stark group contrast and, to an extent, the novice - intermediate
- expert differences. In this work, we aim to determine whether eye
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movement differences within the novice category become apparent
and, if so, at what level of task-knowledge they appear.

1.1 Expert and Novice Differences
There are tenable theories for eye movement behavior differences
in experts and novices. Task-relevant information gathered more
rapidly [Haider and Frensch 1999], more rapid processing and re-
trieval of information stored in memory [Ericsson and Kintsch
1995], and more thorough global image analysis [Kundel et al. 2007]
are considered by Gegenfurtner and colleagues [Gegenfurtner et al.
2011] to be the most supported by the literature.

In the medical domain, expertise is relevant to image interpreta-
tion; for instance, accurate detecting of anomalies in radiographs
[Kundel et al. 2007; Van der Gijp et al. 2017, 2014]. Here, it has been
found that experts employ fewer fixations than novices [Gegen-
furtner et al. 2011; Nodine et al. 1996; Van der Gijp et al. 2017], as
well as longer saccade lengths [Gegenfurtner et al. 2011; Van der
Gijp et al. 2014] and they are overall faster and more accurate at
detecting anomalies [Gegenfurtner et al. 2017, 2011; Kok et al. 2016;
Kundel et al. 2007]. Efficient detection lies in the search strategy
experts employ. For instance, a global - to - focal search strategy
[Nodine et al. 1996; Van der Gijp et al. 2017], where the whole image
is quickly scanned for overall assessment, then more subtle issues
are focused in on. In contrast, novices show more initial centralized
search that systematically covers an image and more attention to
salient structures[Van der Gijp et al. 2017]. Van der Gijp and col-
leagues also looked at search patterns related to expertise and found
that, within tasks (e.g. looking at chest x-rays or mammography),
expert’s visual patterns (e.g. diffusive, left-right comparison) are
consistent [Van der Gijp et al. 2017].

To the best of our knowledge, only one study has looked at
expert-novice gaze differences in the context of radiograph images
specifically for dentistry (orthopantomogram, short: OPT). Turgeon
and Lamm [Turgeon and Lam 2016] found that the complexity
of the image affected search time regardless of expertise. Also,
experts had fewer fixations on OPTs where the anomalies were
more obvious compared to novices, though for images with no
anomalies, scanning behavior for both groups was not significantly
different [Turgeon and Lam 2016]. These findings could imply that
visual search behavior in OPTs may have similar gaze behaviors
to other types of radiographs, but the OPT visual search strategy
patterns may differ.

1.2 Developing Expert Behavior
Although literature on gaze behavior in the particular context of
OPTs is sparse, the majority of radiographs are taken in dental
medicine1. In contrast to other medical fields, OPTs are major part
of the routine diagnosis. However, given how critical OPTs are to
dental medicine, like radiographs, they are susceptible to under-
detections and missed information (dental OPTs:[Baghdady et al.
2014, 2009], non-dental radiographs:[Kok et al. 2016; Krupinski et al.
2006; Kundel et al. 1978, 2008]).

The rate of correct detection can be increased in both the den-
tal and general medical fields. In dentistry for instance, patients

1According to the statistics of the Federal Agency for Radiation Protection, 39% of all
x-rays in Germany were taken within dental medicine in 2012 (www.bfs.de).

Figure 1: Visualization of fixations from a student in each
semester evaluated in the current study as indicated by the
colored numbers respectively. In this condition, the sixth se-
mester student’s data is prior to training.

benefit greatly from early detection of calcifications of the cervical
vessels or pathologies of an inflammatory or neoplastic nature in
the jawbones or maxillary sinuses. Thus, there is large potential
for addressing methodologies in the teaching of radiologic feature
identification and interpretation [Van der Gijp et al. 2017]. In ad-
dition, previous work provides evidence that eye-tracking can be
successfully deployed to design training techniques [Van der Gijp
et al. 2017]. Therefore, augmenting the learning material to pro-
mote how to read radiographs is a promising approach for novice
training.

The expert-novice discussion is important because it may have
implications for the question of how to teach. Given what is known
of an expert’s eye movements, how can learning interventions
impart expert eye movement patterns to a student? Jarodzka and
colleagues [Jarodzka et al. 2010b] found that novices were more
likely to focus on irrelevant information because they lacked the
conceptual knowledge to filter out the extraneous details. As a
training intervention, they found that displaying an expert gaze be-
havior model improved visual attention to the relevant information
in visual stimuli [Jarodzka et al. 2010b]. Furthermore, Jarodzka and
colleagues [Jarodzka et al. 2012] found that by combining verbal
instruction and expert gaze overlay, these eye movement modeling
examples (EMMEs) improved visual search behavior for medical
students in a clinical reasoning task. Despite these encouraging
results, it is yet an open question whether using a model that is
only slightly ahead of the student and modeling of gaze behav-
ior in a progressive fashion could be even more effective. For that
question to be answered, one first needs to better understand the
developmental stages of students.

The purpose of this work intends to address the visual search
behavior related to the developmental stages of students. With
their differences in mind, we can use these progressive models in
learning interventions. Therefore, the future goal will be to detect
when and where a student’s visual search of an OPT deviates from
a more advanced visual search model and, in real time, redirect
him or her towards the gaze behavior most optimal for the best
performance.
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1.3 Gaze Behavior
Gaze behavior differences between novice and experts have been
reliably measured in multiple studies [Gegenfurtner et al. 2011].
However, it is interesting to see whether differences appear within
one dimension: e.g. novices. Differences between students based on
their conceptual knowledge may be apparent at the semester level.
Figure 1 shows the scanpath of a student from each semester, six
through ten, taken from the current study. Here, the sixth semester
student’s scanpath visualized is prior to the OPT analysis course; he
or she has some basic anatomy knowledge, but not in the context
of OPTs. His or her scanpath shows fixations only on the teeth and
no peripheral area exploration. A change in exploratory behavior
is seen from the sixth semester to the seventh semester, where
scanning behavior that compares similar areas of the jaw on the
left and the right is present. Then, eighth, ninth, and tenth semester
students show more coverage of the OPT; specifically, less fixations
on the teeth and longer saccades spanning the upper and lower jaw
areas.

Differences in exploratory behavior, as characterized in the scan-
paths of experts and novices, is often under-explored in the litera-
ture. Even more, scanpath differences relating to the developmental
stages has yet to be measured: Such as scanpaths reflecting acquired
knowledge in each semester. Understanding gaze behavior in an
effort to find patterns determinant of a students’ developmental
level can ultimately build an adequate model representation of eye
movements for the complete learning process. Therefore, we aim to
distinguish exploratory behavior differences at the semester level.

1.4 Scanpath analysis
One of the most accepted methods for scanpath analysis is rela-
beling fixations to characters. Then, patterns of fixations are ex-
pressed as a string of characters. String representations are often
constructed to provide information on how a subject views a stim-
ulus relative to areas of interest (AOIs). Then, we can measure the
similarity of one subject’s scanpath to another’s: For instance, via a
distance score [Goldberg and Helfman 2010; Jarodzka et al. 2010a;
Kübler et al. 2014]. The scores relate to how the sequences can
be aligned. Thus, these metrics are known as sequence alignment
techniques.

According to Jarodzka and Colleagues [Jarodzka et al. 2010a],
AOIs can either be semantic, where they are manually defined,
or gridded. The gridded-AOI approach divides the stimulus into
blocks. This approach saves time compared to the former approach
and maintains the sequential order, shape, and the length of the
scanpaths [Jarodzka et al. 2010a]. An example of two scanpaths
represented as strings, as well as their alignment, is depicted in
Figure 2. In general, string alignment techniques are dependent
on the AOIs, meaning they are susceptible to noise [Cristino et al.
2010; Holmqvist et al. 2011; Jarodzka et al. 2010a]. Aside from the
sequence alignment approaches to scanpath comparison, there are
other methods such as implementations of Hidden Markov Models
[Ellis and Stark 1986; Goldberg and Helfman 2010; Hacisalihzade
et al. 1992; Josephson and Holmes 2002] as well as vector-based
approaches [Dewhurst et al. 2012; Jarodzka et al. 2010a]; though
they are more complex and may be less sensitive to sequence order.
This paper deals largely with sequence alignment.

Figure 2: Scanpath comparison example with two scanpaths
for same stimuli and AOI grid. Below the image is the global
string alignment calculated with the Needleman-Wunsch al-
gorithm. Matches, mismatches, and gaps are [ | , : , - ] respec-
tively.

Global String Alignment Approach. As previously mentioned,
string alignment methods score a scanpath against another based
on their similarity. These methods can either align locally, where
subsequence alignment takes precedence, or globally. One global
alignment approach is the Needleman-Wunsch algorithm. For two
sequences, a matrix is created, and each element is filled with ei-
ther corresponding penalties for gaps or substitutions or rewards
for matches. Compared to other sequence alignment techniques,
the scoring system can offer more flexibility, such as limiting the
penalties for either gaps or mismatches [Baichoo and Ouzounis
2017; Day 2010].

Originally used in bioinformatics, the Needleman-Wunsch al-
gorithm was developed for genetic sequence alignments [Needle-
man and Wunsch 1970]. It has also become a staple of scanpath
analysis. Since string alignment methods’ first appearance in the
eye-tracking world in the nineties [Brandt and Stark 1997; Hacisal-
ihzade et al. 1992], the Needleman-Wunsch algorithm has been
used for numerous studies. For instance, [Day 2010] used it to clas-
sify differing visual search behavior strategies during a decision
making task. Pan and colleagues [Pan et al. 2004] determined that
scanpath differences on web pages were affected by the complexity
of the web page design. Additionally, an implementation of the
Needleman-Wunsch algorithm supported that expert and novice
programmers showed scanpath differences while reading lines of
Java code [Busjahn et al. 2015]. In both [Busjahn et al. 2015; Pan et al.
2004], group and behavioral differences were measured by grouping
similarity scores. Day and colleagues [Day 2010] validated it as a
classifier rather than post hoc similarity grouping. They found that
it was capable of distinguishing six decision making strategies at
from 88% accuracy [Day 2010].

An issue with the Needlman-Wunsch and other sequence align-
ment algorithms is that they can be time costly [Goldberg and
Helfman 2010]. Pairwise comparisons have O(mn) complexity for
both time and space for very large sequences m and n [Baichoo
and Ouzounis 2017]. Furthermore, it does not account for fixation
duration, though other implementations of the Needleman-Wunsch
algorithm, as well as other string alignment approaches, have com-
pensated for temporal information loss. [Cristino et al. 2010].
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String Kernel Approach. SubsMatch [Kübler et al. 2014] combines
string representation with transition frequency analysis. Contrary
to transition matrices or Markov chains, transitions between multi-
ple subsequent fixations can be handled, which can correspond to
behavioral patterns. Initially, a scanpath string is constructed by
assigning letters to fixations in a way that the final scanpath string
contains roughly the same number of occurrences of each letter.
Therefore, horizontal bins of different sizes are constructed so that
each bin contains the same number of fixations [Kübler et al. 2014].
The number of such bins, and thereby of letters to use, is one of the
parameters of the algorithm. Then, all possible subsequences of a
given size (so-called n-grams, where n stands for the length of the
sequence and is the second parameter in the algorithm) and their
occurrence frequencies are calculated. A similarity metric between
scanpaths can be calculated as the sum of differences between all
subsequence frequencies.

Relatively new to scanpath analysis metrics, SubsMatch has
demonstrated its versatility across task based eye movements [Brau-
nagel et al. 2017a,b; Kübler et al. 2015, 2014, 2017]. Originally, it
was developed and evaluated on dynamic driving scenarios to de-
termine safe versus unsafe drivers [Kübler et al. 2014]. Moreover,
Subsmatch was able to determine expert and novice microneurosur-
geon viewing behavior for multiple images with significant between
group differences compared to other metrics such as Scanmatch,
Multimatch, and Eyenalysis [Kübler et al. 2015]2.

SubsMatch was further improved in the version SubsMatch 2.0
[Kübler et al. 2017] by replacing the similarity metric with a SVM
classification. The frequencies of n-grams are then features used
for a support vector machine (SVM) with a linear kernel. Feature
weights are determined by their importance for distinguishing be-
tween two conditions during the training phase. Fundamentally,
SubsMatch 2.0 sets out to determine the best-fit subsequence length
in conjunction with the best-fit string representation in order to
perform SVM classification based on subsequence occurrences. Sub-
sMatch 2.0 was evaluated on four different data sets (see [Kübler
et al. 2017]). It was capable of accurately distinguishing group based
scanpath patterns in varying laboratory and real-world experiments
[Kübler et al. 2017]. Reported accuracies ranged from approximately
20% to 90% for all experimental data evaluated. Where the highest
classification accuracies were for experts and novices in MarioKart
video game driving scenario and the lowest were for image pre-
diction for both a conjunction search task and the Yarbus task. It
should be noted, even the low accuracies were significantly above
chance level [Kübler et al. 2017].

In general, sequence alignment algorithms can offer insight
into the exploratory eye movement behavior of individuals and
groups. The Needleman-Wunsch algorithm has shown great flexibil-
ity across fields in eye tracking and is regularly applied to determine
scanpath similarity. We aim to distinguish exploratory behavior
differences at the semester level; therefore, such an algorithm is
applicable to our cause. Another interesting aspect is the subse-
quence patterns that may develop based on a student’s level of
understanding, i.e., a representation of the associations between
different stimulus areas. The SubsMatch algorithm is able to analyze

2False Discovery Rate adjusted p-values of a permutation test were provided showing
differences in gaze behavior detected for [Kübler et al. 2015],[Kübler et al. 2014]

patterns of this nature. They can be substantially different from
those found by global sequence alignment, and are an interesting
addition. SubsMatch is less commonly used than the Needleman-
Wunsch algorithm, but its versatility in classifying scanpaths in
laboratory and real-world scenarios has been demonstrated and
it can be interpreted as a generalization of the more commonly
found transition matrices. From this analysis, we can further work
towards developing a representative model of the stages of learning
development.

2 METHODOLOGY
2.1 Participants
Dentistry students in the sixth, seventh, eighth, ninth, and tenth
semesters from the University Hospital Center for Dentistry, Oral
Medicine, and Maxillofacial Surgery were invited to participate
in an assessment of their OPT analysis training. This assessment
was held in a classroom equipped with 30 remote SMI RED250
eye trackers, each attached to a laptop3. Data from a total of 103
students were collected: Sixth semester (n = 17), seventh semester
(n = 18), eighth semester (n = 26), ninth semester (n = 28), and
tenth semester (n = 14). Students in the seventh through tenth
semesters were invited to participate once during the semester,
whereas the sixth semester students were assessed three times: At
the beginning of the semester (n = 17), then again in the middle
of the semester (n = 17), and lastly, at the end of the semester (n =
15). These students were measured on multiple occasions because
the sixth semester is the first and only semester in the dentistry
program where they receive explicit instruction and start massed
practice OPT interpretation.

2.2 Eye Tracker
The SMI RED250 remote eye tracker is a commercial eye tracker
with 250Hz sampling frequency. The experiment was created and
controlled using the SMI software ExperimentCenter 3.7.60. Stimuli
were web-based4, with a 13-point5 calibration prior to presentation.
Analysis of the data was performed with the software BeGaze.

2.3 Data Collection
All students were presented with two sets of ten OPTs with varying
anomalies, some more difficult than others. Each OPT was viewed
twice: Once to explore, then again to draw and indicate any anom-
alies found (e.g. Periodontal disease, cavities, insufficient fillings and
abscesses, not including sufficient fillings, missing teeth needing
no further treatment, or prosthetics). Students fixated on a fixation
cross for two seconds. Then, for the exploration phase, they had 1:30
minutes to look at the OPT. Here, they were instructed to search the
OPT for anomalies6. For the marking phase, they were instructed
to mark anomaly areas with a red circle7. A web-based tool bar was
used with a paint-palette symbol in order to draw red circles on
the OPT image presented on the screen. For this phase, they had

3Display: 1920 ×1080 pixel resolution.
4 Mozilla Firefox version 45.9.0
5However, a 9-point calibration was used for pre-training sixth semester students.
6Exploration: “Das Panoramaröntgenbild lediglich betrachten und nach Auffälligkeiten
mit Krankheitswert suchen.”
7Marking: “...Nun sollen Sie Auffälligkeiten markieren.”
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Figure 3: Outline of Experimental Session. After a calibra-
tion, there is an introduction to the task and a tutorial
on marking the anomalies. After, a verbal instruction was
presented with information on what kind of anomalies he
should focus on. The subject is primed with a fixation cross.
Then in the exploration phase, he has 1:30minutes to search
the image in a clinical context. After, there is another in-
struction slide for drawing anomalies. Then, in the drawing
phase, he marks the issues using an on-screen drawing tool.
Here, he has unlimited time and clicks a button on the top
right corner to advance. There are 10 OPTs presented in a
set, each in an visual exploration and marking phase.

as much time as they needed and could click the continue button
to advance. In all, one set comprised of a calibration, introduction,
and instruction, then for the ten images, a fixation, exploration,
and drawing. Figure 3 illustrates the experimental protocol. In one
testing session, two OPT sets were presented with a ten minute
break in between.

2.4 Data Analysis
In the current study, eye movement data during the visual explo-
ration phase of OPTs in the first set were evaluated. Fixations and
saccades for the left eye, including tracking ratios per image, were
calculated using the BeGaze software. Fixations were calculated
using the standard SMI high-speed settings for the I-VT [Salvucci
and Goldberg 2000]: 50ms for minimum duration and 40°/s peak ve-
locity threshold and peak velocity start at 20% of the saccade length
and peak velocity end at 80% of saccade length. Eye movement data
was removed for images where the tracking ratio was below 80%.
Furthermore, participants were removed if they had missing data
for more than two of the ten images. Ultimately, for the scanpath
comparison, eye movement data from 88 participants were used.

Scanpaths were evaluated in three conditions. First, six semes-
ter students prior to their first OPT analysis training course were
compared to seventh, eighth, ninth, and tenth semester students
(pre-training). Second, sixth semester students during the train-
ing course were compared to each of the higher semesters (mid-
training). Third, sixth semester students at the semester end were
compared to each of the higher semesters (post-training). By eval-
uating the pre-training condition, we can determine how distin-
guishable their gaze behavior is due to their lack of OPT exposure.
For the post-training condition, we can determine how similar the

gaze behavior of sixth semester students is to other semesters, e.g.
seventh semester students. Since the time-course of each semester
is a few months, with roughly two month difference between con-
secutive semesters, we also expect similarities in gaze behaviors in
consecutive semesters, e.g. ninth and tenth semester students.

3 RESULTS
We aim to determine whether there are differences in OPT ex-
ploratory behavior of dentistry students at incremental levels of
their training. We evaluated the SubsMatch algorithm and the
Needleman-Wunsch algorithm on three conditions. Since the clas-
sifiers are trained on five semesters (and trials are almost balanced),
guess chance level is roughly 20 percent. The accuracy of the clas-
sifier is measured as the total number of correctly predicted labels
over the total data set.

Since both classifiers employ supervised learning, data is divided
and used for either training or validation. For training, pre-, mid-,
and post- conditions each had 73, 68, and 68 participants respec-
tively. These values were the total students from each of the five
semesters, with data differing only for the sixth semester students:
since they were evaluated over three occasions. For the validation
data, a total of 15 participants – three per each semester– were set
aside. Each participant viewing up to ten OPTs would result in a
maximum of 150 data sets, though after removal of data with low
tracking ratios, 139 data sets were included. As per the training
data, the validation data for all semesters was the same for each
condition, with the sixth semester students’ data differing.

3.1 SubsMatch 2.0 Algorithm Classification

Table 1: Model Classification Accuracy for Data

Condition Subsmatch 2.0 Needleman-Wunsch
Test Validation Test Validation

Pre-Training 37.20% 28.06% 37.20% 30.90%
Mid-Training 34.49% 20.14% 36.30% 20.14%
Post-Training 34.48% 25.18% 33.73% 23.74%

For training the SVM, both the percentile binning (from [Kübler
et al. 2017]) and the gridded bins (from [Cristino et al. 2010]) were
evaluated. We chose the latter approach for our data because it pro-
vided higher accuracies. However, it should be noted that the overall
difference in classification accuracy for gridded and percentile bin-
ning was minimal and either approach could be employed.

After a leave one out cross validation on the training data, as
described in [Kübler et al. 2017], the SVM model suggested the
respective n-gram and alphabet size parameters for all conditions:
2 and 3 for the pre-training condition, 3 and 7 for the mid-training
condition, and 2 and 7 for the post-training condition.

Table 1 details the overall accuracies for the models for both the
test data and the validation data. The classifier is capable of distin-
guishing semesters above chance level for pre- and post-conditions.
Above all, the classifier shows the highest accuracy for the pre-
training condition, where the sixth semester students before their
OPT analysis training.
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Figure 4: SubsMatch semester classification on the validation data. From left to right, confusion matrices for conditions pre-
training, mid-training, and post-training are presented. With true positive rate for each semester along the diagonals. Note
that the colorbar for all conditions is scaled at .5.

More important than overall performance is how the semesters
were distinguished. Figure 4 shows the confusion matrices for each
condition. From the first matrix in figure 4. The model accurately
predicts pre-training sixth semester students (53.33%) and ninth
semester students. However, it often predicts eighth semester stu-
dents as ninth semester students (69.23%). Additionally, tenth se-
mester were falsely classified as ninth semester or seventh semester
students.

Concerning the mid-training condition, overall performance was
at chance level. The middle confusion matrix in figure 4 also shows
that misclassification was more often high for all semesters.

Similar to the pre- training condition, post-training sixth semes-
ter students were accurately classified (36.67%). Interestingly, the
ninth and tenth semester were more likely to be misclassified as
lower semesters (See last matrix in figure 4).

This error in classifying the tenth semester students was also
apparent in all three conditions, where they are often misclassified
as either seventh or ninth semester students. Moreover, eighth
were more likely to be accurately classified, or misclassified as
ninth semesters in all conditions. Sixth semester students were
able to be accurately classified in both the pre- and post-training
condition.

3.2 Needleman-Wunsch Algorithm 1-Nearest
Neighbor Classification

We ran the Needleman-Wunsch algorithm for each scanpath in the
training set against all others to create a matrix of similarity scores
for each pair. For scoring, 2, −2, and −1 for matches, mismatches,
and gaps respectively.

For the grid-overlay size, we divided the stimulus evenly into
blocks: For example, a 10 × 8 size grid means ten blocks wide and
eight blocks high. We ran a multiple-pairwise NW alignment on
the training data for grid sizes from 5 × 5 to 10 × 10. The most
optimal grid size was 6 × 5 width and height respectively8. Then,
with the multiple-pairs similarity matrix, a one-nearest neighbor
classifier determined the best matched similarity score for each
scanpath. The idea is that the scanpaths in the same class will have
the highest similarity score and will be classified accurately.
8For our stimuli: 320 × 216 pixels for each block size

Table 1 reports the overall accuracies for the Needleman-Wunsch
classifier for both training and validation data. Figure 5 shows the
confusion matrix for semester classification for each condition.

In the pre-training condition (first matrix of figure 5), sixth se-
mester students are classified accurately 80% of the time; however,
the model also tends to over-classify other semesters as sixth se-
mester, such as the eighth semester and the tenth semester students.
Otherwise, ninth semester students are accurately classified. Simi-
lar to SubsMatch, seventh semester students were also more likely
to be classified as ninth semester.

In the mid-training condition (middle matrix of figure 5), again,
performed overall at chance level and similar to SubsMatch. For
example, the ninth semester students are accurately detected. Also,
sixth semester students were more likely to be misclassified as ninth
semester students. Finally, tenth semester students were highly
likely to be classified as seventh semester students (51.85%).

Lastly, in the post-training condition (last matrix of figure 5),
tenth semester students are again misclassified as seventh semester
students (48.15%) which is similar to SubsMatch. More interesting,
is the slight shift in the sixth and seventh semester students, where
they were misclassified more often as higher semester students.

Moreover, therewere no significant differences between semesters
sixth through tenth regarding the overall fixation time on expert
defined anomalies (p = .826). Moreover, differences in fixation time
within the 6th semester (pre, mid, post-training) were not signif-
icant as well (p = .881). Thus, the classifiers were able to extract
pattern information related to learning where the eye movement
data alone could not. Both algorithms were highly capable of dis-
tinguishing sixth semester students in the pre-training condition,
and if they falsely classified students in a semester, they were likely
classified as either the preceding or successive semester.

4 DISCUSSION
Both SubsMatch and Needleman-Wunsch algorithms are similarly
capable of distinguishing semesters from the scanpath data. Both
are highly accurate at classifying sixth semester students with no
prior training in OPT analysis as well as distinguishing sixth semes-
ter students at the end of the semester. These results indicate that
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Figure 5: Needleman-Wunsch semester classification on the validation data. From left to right, confusion matrices for condi-
tions pre-training,mid-training, and post-training are presented.With true positive rate for each semester along the diagonals.
Note that the colorbar for all conditions is scaled at .6.

learning in the first semester (pre-training vs post-training condi-
tion) is very relevant. As previously mentioned, the sixth semester
is where they are first exposed to OPT analysis and interpretation.
This lack of previous exposure in the pre-training is clearly observ-
able in the classifiers. The 1-nearest neighbor Needleman-Wunsch
classifier is very sensitive to the pre-training sixth semester and,
therefore, more likely to classify any trial as such. As apparent in the
confusion matrix (first matrix in figure 5), where eighth and tenth
semesters are frequently misclassified as sixth. With this consider-
ation, SubsMatch performs better separation between pre-training
sixth semester students and all others.

Regarding the mid-training condition, both classifiers performed
similarly and barely above chance level. This behavior from the
classifier could be an effect of heterogeneity in learning speed and
success. In the framework proposed by [Van der Gijp et al. 2014], the
initial stage of expertise development is multi-faceted. Not only is it
a foundation of anatomy and pathology knowledge, but also spatial
abilities and ability to mentally manipulate images. Possibly, some
students advance in one of these areas, but not in another (i.e. high
anatomy recall, but not yet in a clinical context), hence the overall
behavior is not consistent enough to be easily distinguishable.

Sixth semester students at the end of the semester, the post-
training condition, are distinguishable from higher semesters, but
at a much lesser extent than they were prior to training. A possible
effect seen in this condition could be the imminent final exams
motivating students to study. Hence, these students were likely
to be misclassified, as higher semesters as seen in the Needleman-
Wunsch classifier and, to a lesser extent, in the SubsMatch classifier.

Al-Moteri and colleagues [Al-Moteri et al. 2017] comprised lit-
erature regarding eye movements and medical decision making
and found that clinical experience was related to gaze behavior
that was more goal-driven and less stimulus-driven [Al-Moteri et al.
2017; Krupinski et al. 2006]. This finding supports the research
that experts are less drawn to salient features with no diagnostic
relevance. However, differences in gaze behavior before and after
massed training (i.e. within the novice level) could also be explained
by their findings. For instance, less experienced students may still
be more drawn to salient areas, such as the teeth, and may neglect

more important areas that have more subtle cues in comparison to
a more experience student in the same semester.

Overall, it is apparent that OPT exploratory behavior shows
considerable initial change. However, these patterns become more
homogeneous over the course of the higher semesters. This behav-
ior can be inferred by the classifiers consistently misclassifying
eighth, ninth, and tenth semester students. The gaze behavior dif-
ferences between eighth through tenth semester may not be as
large or clear as between other semesters. Thus, there seems to be
a gaze behavioral plateau once students reach the later semesters,
where visual search behavior of OPT does not appear to change
drastically. For example, table 2 shows fixation clusters of the vali-
dation data for three of the ten OPTs. Even without the sequential
information, we can see that image coverage differences are the
most visible when comparing the sixth semester students with no
prior OPT analysis training against the sixth semester students
after OPT analysis training. More complicated to decipher are the
clusters of the eighth, ninth, and tenth semester students; in the
second row of table 2 we see minimal difference in image coverage
between the semesters.

Due to the classifier’s behavior, we decided to look at the data in
another context: The content of the curriculum for each semester.
The sixth semester students receive the OPT analysis and inter-
pretation course alongside lectures on radiology protection and
methods and clinical based lectures on dental, oral and maxillo-
facial diseases. In the seventh semester, the curriculum includes
another radiology lecture as well as other courses dental care and
orthodontology. After the seventh semester, the curriculum has
no courses addressing OPT analysis, rather other concepts related
to orthodontics, prosthetics, or diseases and treatment. Students
in higher semesters also take practical training courses as well as
supervised treatment of patients, though there is no requirement to
review OPTs, nor is there further training targeted at OPT analysis.

Interesting enough, the tenth semester students are classified as
seventh semesters relatively often (see third row of table 2). This
finding could be due to lack of OPT exposure in the curriculum
of the higher semesters. Whether their gaze behavior is similar to
that of seventh semester students due to outstanding effects has yet
to be determined. One possibility could be the expertise reversal
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Table 2: Validation data fixation clusters per semester on
three separate images

Pre-training 6th (red) vs Post-training 6th (pink)

8th (green), 9th (blue), 10th (purple)

7th (yellow) vs 10th (purple)

effect [Kalyuga et al. 2003], where at some point in their studies
they have may have increased cognitive load (a prime example
being their final medical school examinations). Another possibility
could be that the tenth semester students start to slowly develop
and test their own gaze shortcuts. Tenth semester students could
be transitioning towards intermediate level, and their visual search
strategies start becoming more personalized. Cooper and colleagues
[Cooper et al. 2010] found that radiologist trainees, though more
accurate than novices at identifying anomalies in magnetic reso-
nance images, spend the same amount of time searching the image.
The authors liken this behavior to constructing their own visual
pattern; where more advanced trainees shows similar gaze pat-
terns to experts[Cooper et al. 2010]. Future research could further
compare students in their last semester at university against first
year interning in order to determine if there are any changes in
performance as well as visual search strategy.

In the present study, data was collected from only 14 participants
in the tenth semester. Since each participant had scanpath data for
ten different images, this sample size was determined to be adequate.
There is a chance that the nearest neighbor classifier was affected by
the group sizes, but the SVM classifier used in SubsMatch balanced
class weights. However, more participants in this semester could
improve the classifiers prediction accuracy for these students.

Although the fixation data did not show significant differences
between students, both the SubsMatch and Needleman-Wunsch
classifiers were able to detect patterns in the visual search behavior
at the semester level. These patterns were more reflective of learn-
ing that occurs in the initial training course in the sixth semester
in the curriculum. Even with only a few months between these
semesters, subtle differences were still apparent.

The overall accuracy was relatively low when comparing to the
previous work for both the Needleman-Wunsch and Subsmatch
2.0. In [Busjahn et al. 2015], the Needleman-Wunsch achieved dis-
tinguishable differences between of experts and novices. Where
novices were 14 introduction to computer science students and ex-
perts were 6 experienced software engineers [Busjahn et al. 2015].

Based on much of the literature reviewed in [Gegenfurtner et al.
2011], we can also conclude that students compared to engineers
or even, in our case, students compared to experienced radiologists
would have highly contrasting behavior that would affect higher
classification accuracy. [Day 2010] achieves high accuracy (88%)
for classifying 6 decision strategies, but the authors specify that
participants were trained in each strategy for two hours prior to
evaluation.

Similarly, Subsmatch 2.0 was evaluated on varying data from the
Yarbus task (66%) to MarioKart (92%), and consistently achieved
high classification [Kübler et al. 2017]. More important, Kübler and
colleagues note that the algorithm performs better when classifying
stimuli differences or performed task, but performance differences
(i.e. passing or failing a driving test) can be challenging [Kübler
et al. 2017]. Given that our task used semester level as a measure of
learning differences, classification in this context is very difficult.
Moreover, eye movements, such as number of fixations, between
semesters do not differ as dramatically as between novices and
experts. Hence, our work was less intent on such high level abstrac-
tion and more on the complex pattern distinction. Considering the
curriculum for dentistry students offers the OPT analysis course
only in the sixth semester and that higher semester dentistry stu-
dents have no mandatory OPT exposure, we were able to see the
learning from this course as represented in the scanpaths.

5 CONCLUSION
With scanpath comparision, we were able to distinguish OPT ex-
ploratory gaze behavior at a semester level. Both models evaluated
indicated that there was an initial effect in the sixth semester stu-
dents, which is in line with the sixth semester curriculum. Addi-
tionally, higher semesters become less distinguishable in their gaze
behavior, which could also be an effect of minimal OPT training
in the curriculum of these semesters. Whether continuous routine
OPT image interpretation in higher semesters would lead to more
effective visual search strategies and ultimately performance poses
further interesting future research questions.

Performance data of each semester, such as detection rate and
number of false positives, were out of the scope of this paper since
the main focus was scanpath analysis. However, this information
would serve as an ideal baseline for comparing classifier behavior.
Future research could measure performance of the semesters and
how scanpath differences are intertwined. From previous litera-
ture, employing learning interventions to promote expert visual
search strategies in students often neglects improving the perfor-
mance [Gegenfurtner et al. 2017; Jarodzka et al. 2012, 2010b; Kok
et al. 2016; Van der Gijp et al. 2017]. This discord is attributed to
semantic knowledge or reasoning that novices have yet to develop.
In order to coalesce both search strategy and performance of stu-
dents, future research can concentrate more on the progressive
behavior modeling rather than expert behavior modeling. Gaze-
based learning interventions that model each stage of expertise
development rather than the absolute end may provide promising
outcomes regarding the performance. Consequently, adapting the
model behavior to the level of the student may be more effective
for dependable diagnoses later on in the dental and even medical
fields.
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Table 1: Validity Of Multiple Class Classifiers for Sixth Semester Versus the Rest.

Condition Pre- Mid- Post- Pre- Mid- Post-

Classifier Subsmatch 2.0 Needleman-Wunsch

Sensitivitya 0.5333 0.1667 0.3667 0.8000 0.0667 0.2333
Specificityb 0.7982 0.8440 0.7890 0.6606 0.8532 0.8991
Precisionc 0.4211 0.2273 0.3225 0.3934 0.1111 0.3889

F-Scored 0.4706 0.1923 0.3438 0.5275 0.0833 0.2917

aRecall, True Positive Rate, or Hit Rate
bTrue Negative Rate
cPositive Predictive Value
dHarmonic Mean of precision and recall

Table 2: ROC Curves for Five Semesters
Pre- Mid- Post-

SubsMatch 2.0

Needleman-Wunsch

1
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ABSTRACT
A growing field of studies in eye-tracking is the use of gaze data
for realtime feedback to the subject. In this work, we present a
software system for such experiments and validate it with a visual
search task experiment. This system was integrated into an eye
tracking analysis tool. Our aim was to improve subject performance
in this task by employing saliency features for gaze guidance. This
realtime feedback system can be applicable within many realms,
such as learning interventions, computer entertainment, or virtual
reality.
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• Human-centered computing → Interaction paradigms; •
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KEYWORDS
E-Learning, eyetracking, gaze-based feedback
ACM Reference Format:
Kai Otto, Nora Castner, David Geisler, and Enkelejda Kasneci. 2018. De-
velopment and Evaluation of a Gaze Feedback System Integrated into Eye-
Trace. In ETRA ’18: 2018 Symposium on Eye Tracking Research and Applica-
tions, June 14–17, 2018, Warsaw, Poland. ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/3204493.3204561

1 INTRODUCTION
In many real-world situations, we are confronted with visual dis-
plays where information needs to be extracted and interpreted.
Often, it is almost unavoidable that important details are missed,
as the human eye and brain can only process parts of the screen
at a time [Jarodzka et al. 2012]. We are limited due to the fovea
restricting our field of view: where we see sharply within two de-
grees [Holmqvist et al. 2011]. Therefore, visual search merges our
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fixations in order to perceive all present information. To stimulate
perception, we can learn how to spread our attention more effec-
tively. Effective gaze guiding can be implemented as graphical user
interfaces or other visual feedback forms and has shown promising
outcomes in a range of professions. For instance, in air traffic con-
trol [Mackworth 1948], piloting a vehicle [Wetzel et al. 1998], and
reading medical imagery [Jarodzka et al. 2012]. Here, task detection
and interpretation under certain circumstances is not only time
consuming to learn, but can also be safety critical.

Gaze guidance or supportive highlighting of on-screen infor-
mation can help in a number of scenarios. For instance, teaching
systematic search of medical x-ray images [Kok et al. 2016; Kundel
and La Follette Jr 1972; Van der Gijp et al. 2017]. Additionally, in air
traffic control simulation, where stimuli is dynamic, gaze guidance
highlights the relevant information as it appears [Mackworth 1948].

These attentional guiding systems not only highlight relevant
information areas, but also needs to account already perceived
information [Jarodzka et al. 2013]. From the literature, it is known
that eye tracking offers insight into a user’s perception through
their gaze behavior [Holmqvist et al. 2011]. Thus in this work, we
focus on effective visualization of online gaze behavior. Specifically,
realtime gaze feedback that visualizes already viewed regions and
incorporates more information from the periphery.

2 RELATED WORK
Employing eye movement data in the educational context has of-
fered insight into how to model gaze. Most notable are the eye
movement modeling examples (EMMEs); Where visual guidance to
directly influence gaze behavior was employed by Jarodzka et al.,
in order to increase subjects’ interpretation performance of medical
records [Jarodzka et al. 2012] and a biological classification task
[Jarodzka et al. 2009, 2013]. For [Jarodzka et al. 2012], eye move-
ment data of experts were visualized by blurring areas they did not
look at: i.e. non-relevant information. For [Jarodzka et al. 2009],
experts’ gaze was visualized as yellow circles on a stimulus image.
For both studies, the model example incorporated gaze data post
hoc.

Qvardfort and colleagues [Qvarfordt et al. 2010] found that ap-
plying white circular occlusions to fixations from a previous free-
viewing over the stimuli was able to reduce the workload during a
visual search task while increasing the true positive rate of targets
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found [Qvarfordt et al. 2010]. Thus, participants were able to notice
areas that they did not search in the free-viewing phase because
the already search areas were occluded.

ScreenMasker [Orlov and Bednarik 2016] is a open source soft-
ware by Orlov and Bednarik intent on developing a customizable
system that visualizes gaze behavior. Their gaze contingent system
creates a pattern mask over the on screen stimuli. Then, it uses gaze
coordinates from the eye tracker to subtract the pattern, or unmask,
where the subject is gazing in real time. For this system, an NVIDIA
graphics card with CUDA framework was used and was shown to
perform with very low latencies [Orlov and Bednarik 2016]. Thus,
offering low to none temporal offset that could disturb a user.

We propose a platform integrated in a publicly available eye
tracking analysis tool. The multiple plugins integrated offer an ex-
perimental center and a realtime gaze feedback option. Our system
was tested and capable of running an a standard computer.

3 SOFTWARE DEVELOPMENT
Eyetrace [Kübler et al. 2015] is a software providing state-of-the-art
algorithms for eye tracking data visualization, statistical analysis,
event detection, AOI generation, saccade clustering, and scanpath
analysis and supports a variety of eye trackers. All algorithms are
parameterizable and the parameters together with the visualization
and statistics can be exported. Therefore, we decided to extend
this existing software, which is publicly available at http://www.ti.
uni-tuebingen.de/Eyetrace.eyetrace.0.html

For our experiment (detailed in section 4), we used the EyeTribe
eye tracker [Ooms et al. 2015] since it was already supported by
Eyetrace. We extended this plug-in to support online usage whereas
previously, only recording and importing the eye tracking data
was available. The developed application interface also allows for
extending the plugin to other eye trackers and online calibration.

3.1 The Experimenter
The Experimenter plug-in for EyeTrace was developed for creating
and performing remote eye tracking experiments. The central part
is the Designer widget, shown in figure 1, which has the following
capabilities:

• Create and modify the experiment design where each index
block is highly customizable (Figure 1 area 1 and 2).

• Import and export experiment designs as CSV file (Figure 1
area 2).

• Record subject data together with name, group and dominant
eye (Figure 1 area 3).

• Select the Eyetracker to be used (Figure 1 area 4).
• Select an interruption key (Figure 1 area 5).
• Start/cancel the experiment run (Figure 1 area 5).

In the Experimenter, a researcher canmanually organize an exper-
iment design offering customization of stimuli, time of presentation,
gazefeedback, and keypress interruptions. These experimental de-
signs can be exported and saved as a CSV file, for additional data
collection. Additionally, the ability to import experiment designs
in CSV file format allows for the option of autogenerating random-
ized experiment designs with a simple script in any programming
language with CSV parsing libraries or text editor.

Figure 1: DesignerWidget GUI. Here, experiments can be de-
signed, andmanaged. The workflow of the experiment is or-
ganized (1) and can be modified (2) and each participant’s
data is defined (3). For each experiment, an eye tracker is
selected (4) as well as a key for interruption (5).

Each step of the experiment design can either be a calibration, or
a stimulus presentation/recording. In calibration, the eyetracker’s
calibration from the API is employed. In stimulus presentation, the
durations (in milliseconds), the filepaths (if none is chosen, a white
screen will be displayed), and whether the step is interruptible
through keypress are customizable. The interruptible option is
optimal for experimental designs where reaction-time or decision-
making tasks are evaluated. Additionally, the researcher can also
present the online gaze feedback for any number of stimuli, as
described further in section 3.2.

The ‘Start’ button in theDesignerwidget initiates the experiment:
Data logging starts here as well. Stimuli are shown in the Presenter
widget, a second full screen widget that gets called. Ideally, if the
researcher has two monitors, the main window of Eyetrace and
the Designer widget can be displayed to the researcher and the
participant only sees the Presenter widget. The researcher can
always cancel the experiment with the Designer widget’s ‘Cancel’
button. Otherwise, the Experimenter runs through the designed
stimuli list and terminates at the end, closing the Presenter widget.

On the data handling side, timestamps, gaze coordinates, and
keypresses are recorded in a log file. Internally, they are stored in
a data structure for the experimental session for later calculations
and analyses.

3.2 Realtime Feedback
In the realtime feedback, the user’s gaze data is visualized on the
screen as he or she is performing a task. In order to achieve low
and relatively constant response times of the feedback system,
intermediate results are stored in a cache. Then, the system only
has to process new gaze data when it is repeatedly called.

Triggered by a timer, every 7ms (approximately 144Hz) the
screen drawingmethod of the Presenter widget gets called to update
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Figure 2: Screenshot of an experiment trial, showcasing the
‘cover’ (a) and ‘uncover’ (b) feedback condition. Stimulus:
Ilya Repin, “Unexpected Visitors”, 1884-1888. Oil on canvas.
public domain https://commons.wikimedia.org/wiki/.

the screen content. This trigger calls the currently active realtime
feedback implementation to draw over the stimulus.

Presently, two feedback algorithms are implemented, plus the
default ‘no feedback’ condition. First, the ‘cover’ feedback occludes
the user’s gaze coordinates on the stimulus with opaque circles as
illustrated in figure 2a. Second, the ‘uncover’ feedback unoccludes
a semitransparent cover in a similar manner to the former con-
dition as illustrated in figure 2b. Essentially, this feedback is the
complement of the former applied to the mask overlay. For both
conditions, there is no decay of feedback for older gaze points.

Both feedback conditions use a white mask-like image overlayed
over the original stimuli, and the feedback effects the masks’ alpha
channel, meaning its opacity is changed. Each event where the
Realtime Feedback class is called, the list of new gaze points is
run through and circles are drawn on the mask overlay for each
new gaze point coordinate. For a video recording illustrating both
the ‘cover’ and the ‘uncover’ feedback methods, please refer to the
supplementary materials.

In both feedback conditions, the mask is either transparent (for
covered) or semi-transparent (for uncovered). the alpha channel
on this map is then changed based on the gaze coordinates. The
compositing method adds or subtracts the circle’s alpha values to
the existing mask corresponding to gaze coordinates, giving the
effect of decreasing or increasing transparency the longer the sub-
ject looks at a certain spot. However, a lower bound threshold is
given to the circle’s alpha value to prevent any part of the stim-
ulus becoming invisible. Each circle consists of a radial gradient,
projecting outwards from the circle’s center to its edge. This effect
makes the feedback appear smoother, removing distracting, sharp
edges (see figure 2). The compositing method updates the mask
with the new gaze points each time the trigger timer event takes
place. Then, the mask gets drawn over the stimulus.

3.3 Gaze Behavior with Feedback
In order to evaluate our online gaze feedback system, we measured
performance in a visual search task with the feedback as an indepen-
dent variable. We propose that both the cover and uncover feedback
conditions will affect gaze behavior compared to no feedback at all.

The cover feedback method could have two effects. One, subjects
may be less likely to look a second time at areas of the stimulus they
already looked at, as the saliency gets decreased after looking the

Figure 3: An example stimuli, as used in the experiment. In
this case, subjects had to decidewhether there is a red square
visible or not. Stimuli was presented at full resolution. On
the right, are the respective sizes for cover small (orange)
and cover large (purple) conditions.

first time. Meaning their time to scan the image is shorter resulting
in shorter reaction times. Two, subjects will have longer saccades,
as the feedback includes distractors in the periphery of what is
currently being fixated, which otherwise might have been the area
of the next fixation.

Additionally, the uncover feedback could result in subjects’ scan-
ning behavior becoming more systematic because the saliency is
being reduced, resulting in fewer inconsistent saccades across the
stimulus. This systematic search behavior effect was also found in
[Jarodzka et al. 2013], the spotlight condition (where non relevant
information is blurred) resulted in faster, more efficient detection
of relevant information.

4 METHODS
For our experiment, we used a Windows 10 computer with a 27
inch monitor (resolution 1920 × 1080 pixel) as display device, and
the Eyetribe eyetracker. Evaluation of the Eyetribe with regards to
scientific usability can be found in the literature [Dalmaijer 2014;
Ooms et al. 2015].

The visual search task was performed with images consisting of
either 80 distractors (target absent) or 79 distractors plus the target
item (target present). An example image is shown in figure 3. In
total, 100 images were generated 1. Order of stimuli presentation
was randomized for each participant.

For each stimuli, the target item was centered on screen for
1.5 seconds. Following target presentation, a fixation cross was
visualized for 0.5 seconds, and then the stimulus presentation. To
signal their decision, participants pressed a button on the keyboard:
Either keypress m (right index finger) for target present, or keypress
y (left index finger) for target absent.

The feedback methods, as introduced in section 3.2, were pa-
rameterized the following way. For each of the two feedback types
(uncovering, covering), we chose two diameters: 100 or 200 pixel
diameter. The control condition was no gaze feedback. Conditions,
in conjunction to order of stimuli, were randomized to allow for a
within-subject evaluation.

A total of 18 participants (17 university students; five wore
glasses) took part. They were positioned roughly 60 cm away from
the screen. A 9-Point calibration was performed using the Eye-
Tribe’s calibration software. Following the experiment, participants
1The images had equal distribution of color and shape of the target item, and its
absence/presence.
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Table 1: Reaction times for correct answers when target was
absent. t-test is between intervention and control condition.
‘*’ indicates a significant result.

condition µ [ms] σ [ms] t-value p

Target absent
control 5256.49 2715.04 n.a.
uncover small 5144.21 2531.49 0.39 0.70
uncover large 5213.20 2430.17 0.16 0.88
cover small 5198.08 2370.27 0.21 0.83
cover large 4693.89 1897.47 2.28 0.02*

filled out a self-report regarding perceived performance and expe-
rience.

Eye movement data was evaluated in Eyetrace. Fixations were
calculated with the I-DT algorithm [Salvucci and Goldberg 2000]
with the following parameters: minimum duration of 50ms, maxi-
mum radius of 20 pixel, maximum outliers of 0. Saccades were then
calculated as the spatial representation between two fixations. In
addition to eye movement data, response error rate and reaction
time for were calculated. Reaction time was defined as time between
onset of stimulus to keypress.

5 RESULTS
From the questionnaire responses, it was found that self reports
of effectiveness and helpfulness for both feedback conditions did
not significantly differ compared to the control condition of no
feedback.

Participant behavior for each experimental trial where they re-
sponded correctly was evaluated. Only 4.3% of the total trials were
excluded because they were incorrect responses. A low correlation
(r = 0.31) ruled out any effect of target distance from center fixation
cross on reaction time.

5.1 Performance
The reaction times for target absent trials ( µabsent = 5095.12ms,
SDabsent = 2405.44ms) were significantly longer than for the target
present trials (µpresent = 2254, 12ms, SDpresent = 1346.08ms: t =
−30.16, p < 0.001).

Regarding feedback intervention and reaction time, it was found
that when the target was absent, the cover large (200 pixel diameter)
condition had significant differences in reaction time. The Welch’s
unequal variances t-test2 as shown in Table 1 found that this con-
dition had significantly shorter reaction times (t = 2.28,p = 0.023).

When the target was present, reaction times were overall shorter,
though there was no significant differences between feedback con-
ditions here.

5.2 Gaze Behavior
Similar to reaction time, the effect of target absent or present on
numbers of saccades was highly significant. Where there were more
saccades when the target was present (µpresent = 16.75, SDpresent =

2Welch’s unequal variances t-test pools together all values for each condition, meaning
sample sizes are larger, which increases the statistical power.

Table 2: Mean and standard deviation for saccade length. t-
test is between intervention and control condition. ‘*’ indi-
cates a significant result with p < 0.05, ‘**’ for significance
level p < 0.005.

condition µsac [px] σsac [px] t-value p

control 313.84 148.48 n.a.
uncover small 329.26 157.14 -2.16 0.045*
uncover large 333.11 152.79 -2.52 0.022*
cover small 344.18 164.12 -3.11 0.006*
cover large 333.19 150.23 -3.31 0.004**

Table 3: Mean and standard deviation for number of fixa-
tions needed to complete the task for each of the five con-
ditions, split for target is absent. t-test between control and
intervention condition, ‘*’ indicates a significant result.

condition µ σ t-value p

Target absent
control 17.36 9.53 n.a.
uncover small 17.19 10.99 0.22 0.83
uncover large 16.86 8.99 0.78 0.45
cover small 16.30 9.67 2.31 0.03*
cover large 16.08 8.07 1.61 0.13

9.32) than when the target was absent ( µabsent = 7.44, SDabsent =
3.47: Welch’s unequal variances test, t = 8.85, p < 0.001). However,
feedback conditions showed no significant effect on number of
saccades.

More interesting, saccade length was affected by the feedback.
Here, the Welch’s unequal variances t-test (values in table 2) also
reported significant differences for feedback conditions compared to
control, where the feedback conditions had longer saccade lengths.

Concerning fixations, fixation duration was not significantly dif-
ferent between control (µcontrol = 118.47ms, SDcontrol = 49.45ms)
and all feedback conditions (For example, µcoverLarge = 116.67ms,
SDcoverLarge = 40.34ms: t = 0.99,p = 0.34).

Similar to saccades and reaction times, the number of fixations
was higher for target absent.Where for both controls: target present
(µpresent,control = 7.22, SDpresent,control = 3.07) and target absent
(µabsent,control = 17.36, SDabsent,control = 9.53).

There were no significant differences between feedback and
control condition when the target was present. However, when
the target was absent (see table 3), an effect for the cover small
feedback (diameter 100px) condition was found. Although there
were no significant differences, a trend can also be seen for less
fixations in the cover and uncover large conditions compared to
the control.

6 DISCUSSION
Generally, it took subjects longer to correctly decide if a target is
absent, than it took them to decide if a target is present. The differ-
ence was highly significant; this experimental result reproduces a
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well documented effect of target presence or absence on reaction
time [Chun and Wolfe 1996; Wolfe et al. 1989].

Concerning how the intervention influenced subject behavior,
we can see that even with our rather simple feedback methods,
we were able to induce a change in subjects. An increase in pe-
riphery employed is apparent from the longer saccades for both
covering and uncovering interventions. However, only the cover
large condition, where a semi-transparent circle with a 200 pixel
diameter overlayed on the gaze coordinates, increased reaction
times when the target was accurately determined as absent. There
was also a trend for less fixations when determining the target was
absent for both cover and uncover (where the circle uncovers a
semi-transparent overlay) large feedback conditions, though signif-
icantly less fixations were only found in the cover small (100 pixel
diameter) feedback condition. Therefore, the realtime gaze based
feedback algorithms developed for the system produced and effect
on gaze behavior in the visual search task.

Interestingly enough, the self-reports from the participants did
not indicate that the feedback helped or improved their perfor-
mance. In contrast, their reaction times as well as their eye move-
ment differences showed that gaze feedback indeed affected their
behavior compared to no gaze feedback. Participants also reported
that none of the feedback conditions were distracting in any way.
Therefore, the gaze feedback system we developed appears to be
unobtrusive, yet effective.

Regarding a more effective gaze model, the current experiment
found that the large cover affected reaction time for target absent
being correctly determined. However, overall correct detection was
extremely high at 96%. Future work into effective gaze modeling
could look into more complex visual search tasks to see whether
gaze modeling improves performance.

Jarodzka and colleagues [Jarodzka et al. 2013] found that using
either the spotlight condition (where non relevant information is
blurred) or the dot condition for EMMEs were both effective in
modeling gaze behavior. However, each condition affected a certain
aspect of learning and performance, where the spotlight condition
affected visual search and the dot condition affected interpretation
[Jarodzka et al. 2013]. In our system, the uncover feedback algorithm
is relatively similar to their spotlight condition, where both present
a clear unaffected gaze area, and occlude the other areas ([Jarodzka
et al. 2013]: blurring, ours: opaque mask). Additionally, [Jarodzka
et al. 2013]’s dot condition is similar to our cover condition; however,
ours covers the gaze area with a semi-transparent mask that does
not hide the stimulus information underneath. Whether our online
gaze feedback would be beneficial for learning environments is of
great interest in future research.

7 CONCLUSION
In this work, we introduced a novel software system for eyetracking
experimentation, which allows realtime feedback to the subject.
We successfully validated the implementation in a visual search
task study. The current system was integrated into our eye tracking
analysis tool EyeTrace. Now, this tool provides experimental design
and testing in addition to the analysis and visualization of eye
tracking data.
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Supplemental Material

Table 1: Reaction times of participants in trials with correct answer, for each of the feedback conditions where
target is present and absent. Welch’s unequal variances t-test is between intervention and control condition. ‘*’
indicates a significant result.

condition µ [ms] σ [ms] t-value p

Target present
control 2169.33 1282.56 n.a.
uncover small 2366.83 1451.12 -1.37 0.17
uncover large 2284.86 1306.01 -0.8 0.42
cover small 2290.51 1443.52 -0.82 0.41
cover large 2130.13 1176.14 0.29 0.78

Target absent
control 5256.49 2715.04 n.a.
uncover small 5144.21 2531.49 0.39 0.70
uncover large 5213.20 2430.17 0.16 0.88
cover small 5198.08 2370.27 0.21 0.83
cover large 4693.89 1897.47 2.28 0.02*

Table 2: Mean and standard deviation for number of fixations needed to complete the task for each of the five
conditions, split for ‘target is present’ and ‘target is absent’. Welch’s unequal variances t-test between control
and intervention condition, ‘*’ indicates a significant result.

condition µ σ t-value p

Target present
control 7.22 3.07 n.a.
uncover small 7.93 3.88 -1.65 0.12
uncover large 7.55 3.30 -0.72 0.48
cover small 7.42 3.59 -0.46 0.65
cover large 7.05 3.40 0.29 0.78

Target absent
control 17.36 9.53 n.a.
uncover small 17.19 10.99 0.22 0.83
uncover large 16.86 8.99 0.78 0.45
cover small 16.30 9.67 2.31 0.03*
cover large 16.08 8.07 1.61 0.13

Table 3: Mean fixation duration and standard deviation for Welch’s unequal variances t-test between intervention
and control condition. Values for target present and target absent combined

condition µfix [ms] σfix [ms] t-value p

control 118.47 49.45 n.a.
uncover small 119.27 41.64 -0.44 0.67
uncover large 120.10 45.97 -0.75 0.46
cover small 121.11 48.70 -1.05 0.30
cover large 116.47 40.34 0.99 0.34
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ABSTRACT
The cognitive processes that underly expert decision making in
medical image interpretation are crucial to the understanding of
what constitutes optimal performance. Often, if an anomaly goes
undetected, the exact nature of the false negative is not fully under-
stood. This work looks at 24 experts’ performance (true positives
and false negatives) during an anomaly detection task for 13 images
and the corresponding gaze behavior. By using a drawing and an
eye-tracking experimental paradigm, we compared expert target
anomaly detection in orthopantomographs (OPTs) against their
own gaze behavior. We found there was a relationship between the
number of anomalies detected and the anomalies looked at. How-
ever, roughly 70% of anomalies that were not explicitly marked in
the drawing paradigm were looked at. Therefore, we looked how
often an anomaly was glanced at. We found that when not explicitly
marked, target anomalies were more often glanced at once or twice.
In contrast, when targets were marked, the number of glances was
higher. Furthermore, since this behavior was not similar over all
images, we attribute these differences to image complexity.
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1 INTRODUCTION
Expertise in any domain is what many strive for. It is known that
these skills are established through practice. Yet, there are still
mechanisms that are not fully understood. Mainly, how experts
process their visual input such that their domain knowledge is
effectively applied.

In general, experts are not easily available due to time and work
constraints. Therefore, the majority of the literature measures ex-
pertise with small samples of experts. Such small caches can lead to
an insufficient understanding of expertise. In the literature review
from Gegenfurtner et al., [4], across all expertise domains evaluated,
mean expert sample sizes ranged from six to 17 experts; with the
medical profession having approximately eight experts. More re-
cently, van der Gijp et al. [10] provided a similar review that focused
solely on radiology. Of the 26 studies evaluated in the meta-analysis,
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only two studies were able to acquire more than 15 experts (e.g. sub-
specialized experts, radiologists, or other medical specialists). Both
literature reviews offer a comprehensive understanding of experts’
scanning behavior in addition to performance compared to novices.
However, the interplay of cognitive mechanisms that distinguish
acceptable task performance is still uncertain. In medical image
processing, such as radiology, an important research question is
related to the reasons why an anomaly would be overlooked.

1.1 Previous Literature
As in many fields, experts in medical fields exhibit more optimal
performance. However, optimal performance may or may not al-
ways be one hundred percent accurate. Often, it is a tradeoff of
detecting what is most necessary with regard to a patient’s health
and understanding the costs. Diniz and colleagues [2] looked at
the accuracy of cavity detection in OPTs for dentists with 5 to 7
years experience (10) versus students in the final semester of dental
studies (10). The authors reported that the experts had a trade-off
of low sensitivity to high specificity compared to the advanced
students, who had high sensitivity and low specificity. They attrib-
uted their findings to the idea that more experienced dentists may
overlook some cavities and focus on the more detrimental ones
[2]. Employing this strategy, the more experienced dentists avoid
overtreating or extensive restoration processes that are costly and
may leave a patient susceptible to complications.

Filtering of non pertinent information is also crucial to effective
medical image interpretation. Mallet et al., 2014 [7] measured eye
movements of 65 radiologists and divided them into experienced
CT colonography scan readers (27) and radiologists inexperienced
in the same task (38). They found that the experienced radiologists
were overall more accurate in identifying polyps in a 3D CT scan
and had shorter time to first fixation on polyps. However, the time
to interpret the polyps accurately was not distinguishable between
the experienced and inexperienced readers [7]. Thus, experienced
readers may recognize and search the polyp-prone areas more
quickly, but they process and interpret the area of interest similar
to radiologist inexperienced in CT scan reading.

Additionally, Drew et al., 2013 [3] had 24 expert radiologists
searching 3DCT Lung scans to detect asmany nodules as possible in
three minutes. They were instructed to scroll through a stack of 2D
image slices, and click where they found nodules. Two predominant
search strategies were observed: Scanning, or searching each slice
in a left to right reading fashion, and drilling, or searching multiple
slices top to bottom. They found the ‘drillers’ had a significant
increase in true positives, though no difference in false positives.
Also, drillers’ scanning behavior covered a larger area of the lung.
When looking at the false negatives, the scanners had more search
errors (not looking at the nodule areas) and drillers had higher
recognition errors. Meaning, they often glanced at a nodule, but
not long enough to indicate an error in their interpretation.

To our knowledge only one study has focused on radiological
image interpretation (orthopantomographs, or OPTs) in the dental
context. Turgeon & Lamm (2016) [9] compared 15 certified oral and
maxillofacial radiologists (OMRs) to 30 fourth year dental students.
Performance was not measured; however, they compared students
to experts’ eye gaze on subtle and non subtle anomalies in the OPTs.

They found that eye movement behavior was different between
experts and novices. More interesting, experts had longer total
time and more fixations in areas of interest when the images had
more subtle anomalies. Whether these eye movement behaviors
are indicative of accurate detection is of interest to this work. We
aim to look into the correlation of gaze on anomalies of interest to
the actual detection of anomalies of interest. Additionally, if gaze
behavior can also indicate recognition or interpretation errors is of
interest.

We aim to further explore the relationship between gaze and
anomaly detection in medical image interpretation. Specifically,
whether accurate glances correlate to an accurate anomaly detec-
tion. Additionally, whether search or interpretation errors can be
measured by the number of glances; where a higher number of
glances on an anomaly that was not determined as such may be
indicative of an interpretation error.

By incorporating a drawing paradigm into the current study, we
are able to create comprehensive expert ground truth performance
data. Then, by comparing the gaze data, we can further explore the
cognitive process that underly expertise in this domain.

2 METHODOLOGY
2.1 Participants
26 dentists (13 female, years experience:M = 10.46, SD = 11.26) at
the university hospital clinic participated in the current study. 46%
of the participants see less than 10 patients per day and 54% see
between 11 and 30 patients per day. Due to technical issues with
the eye tracker, gaze data for two participants was not available,
though their data for the drawing portions of the experiment was
still recorded. Therefore, gaze data was available for 24 participants.

2.2 Eye Tracker
The eye tracker used was the SMI RED250 (Sensoric Motor In-
struments, Germany) running at 250Hz. A 9-point calibration plus
4-point validation was performed prior to presentation. The experi-
mental setup, including eye tracker and calibration, and design are
similar to the one found in the study by Castner et al. [1], where
subjects view OPT stimuli and are asked to mark where they detect
anomalies. Our study employs the same structure, although we are
measuring expert dentists working in a clinic and not dentistry
students as in [1].

Fixations for the left eye were calculated using I-VT [8]: using a
40°/s velocity threshold and 50ms for minimum fixation duration.
Where gaze points are considered one fixation if the point to point
velocity is too slow (below the threshold) to be indicative of a rapid
eye movement, or saccade, to another location.

Eye movement data for an image was removed if the tracking
ratio was below 75%. This pruning was performed to control for
any systematic offsets that could have potentially arose from head
movements, and in turn would affect accuracy of the gaze points.

2.3 Data
2.3.1 Gaze and Drawing Protocol. The protocol consisted of one

set of 15 OPTs with anomalies of varying difficulty and subtlety:
Two images were negative controls with no anomalies. Similar to
the protocol in [1], each OPT was viewed for an exploration phase,
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Figure 1: Experimental Session Protocol. The protocol com-
prised of a calibration, introduction, and instruction, then
for the 15 OPTs, a fixation, exploration, and drawing. Image
borrowed from [1].

Figure 2: Drawing example. Drawings from a participant
(Red) with predefined anomalies (Dotted Yellow), or targets,
overlayed. In this example, the participant would have four
hits and five misses and two false positives.

which was 45 seconds in duration, and again for a marking phase,
which was unlimited in duration. Anomalies detected in the explo-
ration phase1 were then marked by drawing a red circle on-screen
in a click-and-drag fashion. The instruction for the exploration
phase was only to inspect the image for pathologies within the 45
seconds: Then, in the marking phase, only to mark the anomaly
areas that were found in the exploration phase. Figure 1 illustrates
the experimental protocol.

In addition to the gaze data, another interesting aspect is the
participants’ ability to detect anomalies. By employing an on-screen
drawing phase, we were able to measure which areas participants
determined as necessary for treatment.

Drawings obtained from the marking phase were compared
to predefined anomalies determined for each image; Images had
anywhere from four to fourteen anomalies. Participants’ indication
of an anomaly by marking it were hand-coded by trained evaluators
in order to determine if the drawing matched that of the specific
target anomaly. A correct mark on an anomaly was determined if
the drawn circle overlapped or was within the predefined anomaly
by the evaluators2. For simplicity, we will refer to the predefined
1e.g. Periodontal disease, cavities, insufficient fillings and abscesses, not including
sufficient fillings, missing teeth needing no further treatment, or prosthetics.
2Inter-rater reliability: .94 and .934.

Figure 3: Relationship between overall gaze recall andmark-
ing recall. The lighter hues are indicative of higher marking
recall.

anomalies as targets and the correct detection from a participant or
participants as a marked hit.

Regarding targets and gaze, if the coordinates of a fixation were
within or on the border of a target, it was considered a glance hit.
Additionally, we measured how often glances were for per target.

2.3.2 Recall and Precision. In the following, we report the per-
formance in terms of recall and precision. Recall (also known as
sensitivity or true positive rate) is the number of true positives over
the total of true positives and false negatives. Thus, if an image has
a total of eight predefined anomalies and a participant finds six of
the anomalies, meaning six true positives and two false negatives,
the subject has a recall of 75%. The false negative rate, or miss rate,
is the complement of the recall, being the number of false negatives
over the total of false negatives and true positives. For the current
example, the false negative rate would be 25%.

Precision is the true positives over the total of true positives and
false positives. Though, the focus of this work is more on the recall,
precision and recall affect the harmonic mean (F1 score). For the
example shown in Figure 2, we have a recall of 50% and a precision
of roughly 67% (four true positives and two false positives).

3 RESULTS
3.1 Recall
For the participants, marking recall averaged over all images ranged
from 26% to 68%: M = 49.99%, SD = 11.12% (n = 26). However,
given that some of the images may have been more complex or
harder to determine, this likely affected the overall recall rate per
person. Considering each image separately, marking recall per per-
son could be as high as 96% or even 0%. In addition, overall precision
ranged from 53.85% to 96.43%; the mean F-Score was 60.89% (SD:
8.65%).
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Figure 4: Frequency of Glances for marked and unmarked
targets

We measured the average gaze recall over all images for each
participant; Where one or more glances on a target are considered a
gaze hit and no glances on a target are considered a gaze miss. Gaze
recall ranged from 50% to 83%: M = 69.82%, SD = 8.44% (n = 24).
Figure 5 shows the relationship between the gaze recall to the
marking recall, where there is a slight positive correlation: r =
0.33,p = 0.11. Figure 4 shows the gaze and marking behavior on
an image level. Once again, for image two and three there was
a tendency toward extra searching within the marking phase as
shown by the gaze recall being lower than the marking recall.

Table 1 shows the true positive and false negatives for all targets
for all images for both gaze and marking data. Interestingly enough,
there is a portion of instances where targets were marked even if no
gaze was measured for those targets. This behavior could be attrib-
uted to extra searching in the marking phase of the experimental
protocol, though participants were advised not to.

Table 1: Gaze andMarkingData: Absolute & (Percent) Values

Condition Marked Target Missed Target Total
Gaze on Target 1067 (37.41%) 960 (33.66%) 2027 (71.07%)
No Gaze on Target 371 (13%) 454 (15.91%) 825 (28.93%)
Total 1438 (50.42%) 1414 (49.56%) 2852 (100%)

A chi-square test of independence was performed to examine the
association between gaze recall and marking recall. The association
between these variables was highly significant, X 2 (1,N = 2852) =
13.49,p < 0.01.

More interesting, when we look at the gaze behavior per target
the number of glances per target was significantly higher (M =
2.34, SD = 3.25) when the target wasmarked thanwhen notmarked
(M = 1.51, SD = 1.82), t (2850) = 8.35,p < 0.001. Considering
targets were not marked 49.56% of the time, zero glances on a
target could be indicative of ineffective searching of the image.

Figure 5: Frequency of glances per target formarked and un-
marked targets for all images as depicted by the overlapping
distributions for marked targets (blue bars) and unmarked
targets (red bars). The frequencies when number of glances
per target is 3 or more is overall higher for when the target
was marked in contrast to when the target was not marked.

Whereas, when there are glances per target for the case target
missed, this behavior could be indicative of an analysis error:Where
a low number of glances on a target could indicate an error in
recognition, and a high number of glances could indicate an error
in interpretation.

3.2 Glance Frequency
The frequency of glances per target as seen in Figure 5 shows that
for unmarked targets, there is a higher frequency for zero glances
or one glance on a target. For marked targets, there is also a trend
to glance once on a target. However, when there are three or more
glances per target, there is a switch in the marking behavior, where
the frequency is higher for targets marked compared to targets
unmarked.

Due to the variability of the targets in the images, marking recall
per image varied greatly, as seen in Figure 4. In particular, for image
nine (see Figure 6), the average gaze recall is 80%. The number of
glances per target for this image shows a distinction between glance
behavior for target marked or target unmarked. Here, there are
higher frequencies for glancing at a target three or more times when
the target was marked, while when the target was not marked, there
are higher frequencies for glancing at a target one or zero times.
Overall, there was a higher true positive rate for target marking,
which is also apparent in the gaze behavior.

Another example of different behavior respective of image is
shown in Figure 7. Here, the gaze indicates a relatively high number
of targets detected as false negatives were glanced at 2 or more
times. Especially, when the number of glances increases to five, the
frequencies are higher for targets unmarked in contrast to targets
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Figure 6: Histogram of number of glances per target for
when the target wasmarked ormissed. For this image in par-
ticular, the number of glances on a target was higher when
the target wasmarked in contrast towhen the target was not
marked.

Figure 7: Example of an image where there is a high amount
of false negatives in marking although there is a high fre-
quency of higher glances per target.

marked. Thus, targets looked at often were possibly interpreted as
not being an anomaly. This glance behavior could be indicative of
interpretation errors.

4 DISCUSSION
For detecting anomalies, the sample of expert dentists we tested
found roughly 50% of the target anomalies, though their perfor-
mance varied over the images. The recall rates we found are roughly
similar to those in the study by Diniz et al. [2], where the mean
recall from the expert dentists was between 20 and 40%, depending
on the nature of the anomaly. They attributed the experts’ detection
behavior to ‘overlooking’ anomalies where the cost (i.e. treatment
cost) of detecting the anomaly as such would outweigh any long
term benefit. One possible explanation for the recall of the experts
in our study could be the nature of the experiment. They were
instructed to mark only the anomalies they detected in the explo-
ration phase and not mark anomalies detected additionally during
the marking phase. Although, we could not control for additional
searching, if the subjects adhered to this instruction, naturally recall
would be lower than real world conditions where they may have
unlimited time to inspect an OPT.

However, the allusion of ‘overlooking’ is apparent. We found
there was a slight relationship (r = 0.33) between gaze on target
anomalies and the detection of target anomalies. Although, more
interesting was that gaze recall, or the rate of whether an anomaly
target was glanced at, was overall higher than the recall of marking
the anomalies. High sensitivity to looking at anomaly areas can be
indicative of effective searching of the image and all possible areas
where pathologies reside. Thus, experts often looked at an anomaly
area, although they marked it roughly at chance level (50.42%).

It is known that experts often have more effective search strate-
gies, where they fixate more often on relevant areas compared to
their novice counterparts, and that experts are also better at detect-
ing anomalies [9, 10]. However, when an expert does not mark an
anomaly when he or she has seen it, which mechanisms determine
that cognitive decision? Kundel et al. [6] proposed three types of
decision errors. Based on the fixation duration, a false negative
could be classified as either a search error (no fixation on target), a
recognition error (short fixation duration on target), or a decision
error (long fixation duration on target).

Fixation duration can be applied to distinguish different errors.
However, we successfully applied the number of glances for de-
termining the cognitive mechanisms behind false negatives. For
experts, we found very few occurrences that could be similarly
classified as a search error. Roughly 30% of targets missed were
due to no gaze on the target, meaning an anomaly was not de-
tected because it was not looked at. Similarly, a recognition error
could be distinguished as glancing once or twice on the anomaly,
where an expert may look over an anomaly and determine it is not
worth further scrutiny. Whereas, a decision error may be charac-
terized by more glances to the area. This high number of glances
could indicate, that more cognitive processing may be involved for
determining the nature of the anomaly.

Overall, when an anomaly was not detected as such, there were
higher frequencies of one or two glances on the anomaly. Therefore,
it is possible these were recognition errors. Decision errors were
overall less frequent, where generally if an anomaly was looked
at three or more times, it was more likely to be explicitly deter-
mined as such. However, this was not the case when we looked at
each image separately. There were some images where unmarked
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anomalies had high frequencies for three or more glances on an
anomaly. The exact nature of how obvious or subtle anomalies were
per image was out of the scope of this paper. However, future work
could employ expert glance behavior as a predictor of how easy or
hard an anomaly is to accurately detect. Furthermore, the scanpath,
or order that the anomalies were fixated on, can offer insight into
patterns indicative expert search behavior and is of great interest
to our future research. In our future work we will therefore employ
advanced algorithms for scanpath analysis (e.g., Subsmatch [5]) to
relate expertise with performance. This understanding of the cog-
nitive processes involved in effective medical image interpretation
as illustrated by the gaze behavior can offer expert insight toward
teaching effective decision making in novices.
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Enkelejda Kasneci1☯

1 Human-Computer Interaction, Institute of Computer Science, University Tübingen, Tübingen, Germany,
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Abstract

Expert behavior is characterized by rapid information processing abilities, dependent on

more structured schemata in long-term memory designated for their domain-specific tasks.

From this understanding, expertise can effectively reduce cognitive load on a domain-spe-

cific task. However, certain tasks could still evoke different gradations of load even for an

expert, e.g., when having to detect subtle anomalies in dental radiographs. Our aim was to

measure pupil diameter response to anomalies of varying levels of difficulty in expert and

student dentists’ visual examination of panoramic radiographs. We found that students’

pupil diameter dilated significantly from baseline compared to experts, but anomaly difficulty

had no effect on pupillary response. In contrast, experts’ pupil diameter responded to vary-

ing levels of anomaly difficulty, where more difficult anomalies evoked greater pupil dilation

from baseline. Experts thus showed proportional pupillary response indicative of increasing

cognitive load with increasingly difficult anomalies, whereas students showed pupillary

response indicative of higher cognitive load for all anomalies when compared to experts.

Introduction

Visual inspection is a commonly performed task in many contemporary professions, e.g. radi-

ologists and other medical personnel frequently examine medical radiographs to diagnose and

treat patients, airport security scan X-rays of luggage for prohibited items, etc. [1, 2]. In such

tasks, expert visual inspection is derived from domain knowledge and is optimized for a short

period of search. Thus, understanding the search process and measuring mental workload are

fundamental in expert research towards developing computer-based metrics. Generally, visual

performance, e.g. during search, has been characterized by metrics derived from the
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discrimination of fixations and saccades. Fixations are the period when eye movements are rel-

atively still, indicating focus of attention, usually on areas prone to a specific goal [3, 4]. Sac-

cades, the rapid eye movements, are usually made when scanning over irrelevant areas to a

specific goal [5].

Of particular interest is estimation of cognitive load during visual search used in demand-

ing real-world tasks. Images with complex features can affect performance, especially in visual

search, and so selection of measurement techniques to assess human performance is para-

mount [6]. One especially important factor in performance is workload, where feature com-

plexity has a measurable effect. This research focuses on the objective, non-invasive,

physiological measure of cognitive load [7] via eye tracking. Consequently, we expect that cog-

nitive load measures will manifest significant responses during the decision-making aspect of

the visual search task.

We examined the differences between expert and novice inspectors of dental panoramic

radiographs. Orthopantomograms (OPTs), which are information-dense 2D superimpositions

of the maxillomandibular region and used frequently in all aspects of dental medicine [8]. Due

to their heavy reliance on OPTs, dentists undergo professional training and licensing; however,

they are still highly susceptible to under-detections and missed information [9–13]. Coupled

with concern for patients’ health, accurate interpretation in spite of complex imagery is crucial.

Specifically, OPTs have been shown to be less sensitive imagery for certain anomaly types than

intraoral (periapical) radiographs, making correct detection more difficult [14, 15]. Therefore,

less sensitive imagery of an anomaly can evoke higher gradation of difficulty for its accurate

interpretation. Further understanding of both expert and novice OPT examination is neces-

sary to effectively improve the training of medical image interpretation. Previous research has

only scratched the surface of the cognitive processes during visual inspection of radiological

images and the dichotomy between experts and novices. For this reason, our work goes one

step further by examining the adaptability of cognitive processes during visual inspection of

multiple features in decision making.

Background: Characterizing expertise

Expertise lies in the mind. The theory that expert aptitude develops a more structured long-

term memory designated for domain-specific tasks [16] offers insight into experts’ faster and

more accurate abilities [5]. Long-term working memory, proposed by Ericsson and Kintsch

[16], offers this explanation for how experts seemingly effortlessly handle their domain-specific

tasks. Their memory structuring facilitates their ability to maintain working memory at opti-

mal capacity, avoiding overload, which affects productivity and performance.

Generally, working memory is understood as temporary storage for processing readily

available information [17]. Long-term working memory relates to the structuring available to

the larger, long-lasting storage and is of interest in skill learning [16]. For instance, chess play-

ers employ memory chunking that enables them to quickly recognize favorable positions and

movements with less focus on single pieces [18]. Athletes show faster reaction to attentional

cues, especially in interceptive sports, (e.g. basketball), indicating more rapid mental process-

ing [19]. Also, medical professionals have been thought to proficiently employ heuristics in

their decision-making strategies, i.e. visual search of radiographs [20] and diagnostic reasoning

in case examinations [21, 22].

Developing new skills and the related memory structures for a specific discipline rely

heavily on the capacity of working memory. According to Just and Carpenter [23], when the

working memory demands exceed available capacity, comprehension is inhibited, leading to

negative effects on performance. Effective comprehension then relies on resource allocation
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[23]. Optimal resource allocation supports rapid convergence to the most appropriate task-

solution. Experts can filter out irrelevant information, which is evident in gaze behavior; they

focus more on areas relevant to the task solution and less on areas that are irrelevant [5, 24,

25]. For instance, expert radiologists devote more fixations to anomaly-prone areas [26, 27]

and devote shorter fixation time to an anomaly in detection tasks [20, 28]. Dental students’

gaze behavior has also been shown to be an effective feature to classify level of conceptual

knowledge [29].

Additionally, when the task becomes too difficult or is perceived as such, there is more

demand on working memory [30]. Sweller points out that the means-to-an-end problem solv-

ing strategies that novices employ can overload working memory [31]. And though perceived

task-difficulty is influenced by acquired knowledge [32], even experts can face challenging

problems that could evoke more load on working memory [33, 34]. Cognitive load, or more

specifically intrinsic cognitive load [35], is the effect of “heavy use of limited cognitive-process-

ing capability” [31]. For more information, see review by Paas and Ayres [36]. High cognitive

load has been shown to have negative effects on performance [30] and effective learning in

general [37].

One way to assess levels of cognitive load is the pupillary response [38–40], where pupil size

has been shown to increase as a response to memory capacity limits [41, 42] as well as when

the task becomes too difficult [37, 43]. Accordingly, experts have a higher threshold for what is

difficult compared to their novice counterparts, which is evident in the pupil response. There-

fore, we are interested in expert and novice dentists when interpreting anomalies of varying

degree of difficulty in panoramic radiographs. More important, our aim is to further under-

stand experts’ perception of difficulty in their domain-specific tasks and whether this affects

cognitive load.

Pupil diameter as a measure of cognitive load

Not only does visual search strategy reflect cognitive processes [44–46], but pupil diameter has

also been shown to be a robust, non-invasive measurement of cognitive load [37–39, 41–43,

47–52]. Hence, with an increase in task difficulty, the diameter increases, otherwise known as

task-evoked pupillary response. Originally, Kahneman and Beatty [47] linked pupil response

to attentional differences. Then, the link between attention and capacity was promoted [43];

where higher load on the working memory showed a larger change in pupil dilation. Addition-

ally, pupillary response has been found to be an indicator of learning [37], where pupil diame-

ter decreased with more experience in a task.

Much of the early research in processing capacity and cognitive load has found that pupil

activity correlates to workload during a variety of tasks [41–43, 53]. Specifically for visual

search tasks, cognitive load has also been measured by pupil activity. For instance, more dis-

tractors make the paradigm more difficult, affecting the pupil diameter increase [54]. Also,

monochrome displays evoked longer search time and more pupil dilation than colored dis-

plays for both object counting and target finding tasks [55]. Regarding uncertainty, an increase

in pupil diameter was associated with response time and uncertainty of target selection [56].

One of the more important takeaways from the visual search literature is the interplay of selec-

tive attention, increasing task demand, and the mental effort evoked. Moreover, this interplay

is apparent in medical professionals and their diagnostic interpretation of radiographs. Stu-

dents may not be as exposed to such tasks of varying difficulties, but accumulate more experi-

ences overtime, which can reduce cognitive load. Regarding learning, pupil dilation decreases

as an effect of training over time [57].
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Though it is apparent that pupillary response is a product of cognitive load, other factors

have been shown to effect pupil size, e.g. fatigue [58, 59], caffeine consumption [60], etc. [59,

61]. Most important to this work is changes in luminance in the environment, which result in

the physiological response of constriction or dilation [52]. Age difference has also been shown

to affect pupil size differences, where overall pupil size in older adults is smaller than younger

adults, though variance between subjects in similar age groups is also quite high [48, 52]. With

these factors in mind, studies on pupil diameter and load recommend a task-to-baseline com-

parison in luminance-controlled environments [37–39, 41–43, 47, 50, 54, 56, 62, 63]. There-

fore, when measuring pupillary response in relation to cognitive load, these factors should be

controlled in order to avoid such confounds.

Previous research

Only a few studies have comprehensively addressed cognitive load and medical expertise, and

even fewer have addressed cognitive load during visual search. Trained physicians showed

more accurate performance and smaller pupillary response during clinical multiple-choice

questions compared to novices, and this effect was larger for more difficult questions [50].

Expert surgeons’ pupil diameter increased as a result of increasing task difficulty during lapa-

roscopic procedures [64]. Additionally, Tien et al. [65] found that junior surgeons exhibited

larger pupil sizes than experts during a surgical procedure. More important, they found that

specific tasks affected junior surgeons’ pupillary response to a higher degree. For more refer-

ences highlighting lower pupillary response as an effect of medical expertise (e.g. surgeons,

anesthesiologists, physicians), see Szulewski et al. [66].

Regarding specifically medical image interpretation, Brunyé and colleagues [49] found

pupil diameter increases as an effect of difficulty in diagnostic decision making, more so for

cases that were accurately diagnosed. They further highlight the prospects that pupillary

response in combination with gaze behavior has in understanding uncertainty in medical

decision making [67]. Specifically for dental expertise and OPT interpretation, experts’ gaze

behavior (e.g. fixations) was highly distinguishing of difficult and obvious images, where stu-

dents’ gaze behavior was not [68, 69]. Castner et al. [13] found that fixation behavior

changed with respect to differing anomalies. Therefore, the degree of difficulty in accurate

pathology detection can affect gaze behavior, which can be indicative of the reasoning strate-

gies used.

With this intention in mind, we looked at expert and novice dentists’ pupillary response

while fixating on anomalies of varying difficulty in panoramic radiographs. To our knowledge,

we are the first to apply differentiable pupillometry to the dental imagery visual search domain.

Not only do these OPTs have multiple anomalies, but also within one OPT, varying difficulties

can be present. Therefore, we are not analyzing an overall impression of easy or difficult

image. Rather, through the course of the search strategy, we are extracting when dentists spot

an anomaly and consequently mental processing at that moment. We propose the degree of

anomaly interpretation difficulty can be indicated by changes in the pupillary response; where

a larger response is more representative of harder to interpret anomalies. We also hypothesize

to find a difference in the pupillary response between experts and novices, as established by

prior research; where baseline-related pupil difference, as a measure of cognitive load, is sensi-

tive to experts’ processing of anomalies of varying degree of difficulty. Additionally, we report

that students, after acquiring the appropriate training to inspect OPTs, have higher cognitive

load compared to experts. More interesting is whether students are attuned to the varying gra-

dations of the anomalies.
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Materials and methods

Participants

Data collection took place in the context of a larger project performed over multiple semesters

from 2017 to 2019. Dentistry students from semesters six through ten were recorded during an

OPT inspection task. For reference, sixth semester students are in the second half of their third

year and the tenth semester is in the fifth year of their studies, being the last semester before

they continue on to the equivalent of a residency.

The sixth semester students were evaluated three times in each period of data collection due

to their curriculum requirement of an OPT interpretation training course. For the purpose of

the present paper, we chose to only evaluate the sixth semester students after this course (Nsixth

= 50). They have the necessary knowledge to perform the OPT task as it is intended (i.e. they

know what they have to look for), without having yet acquired the routine skills.

Table 1 details both the student and expert data. Experts (Nexperts = 28) from the University

clinic volunteered their expertise for the same task that students performed. Experience was

defined as professional years working as a dentist and ranged from 1 to 43 years (Myears =

9.88). 50% of experts reported seeing between 11 and 30 patients on a typical work day and the

remainder saw less than 10 patients a day. All experts had the necessary qualifications to prac-

tice dentistry and or any other dental related specialty: e.g. Prosthodontics, Orthodontics, End-

odontics, etc. Due to technical difficulties, eye tracking data was lost for two participants,

leaving Nexperts = 26 participants for the eye tracking analysis.

The Ethical Review Board of the Leibniz-Institut für Wissensmedien Tübingen approved

the student cohort of the study with the project number LEK 2017/016. All participants were

informed in written form and consented in written form that their pseudonymous data can be

analyzed and published. Due to a self-constructed pseudonym, they had the option to revoke

this consent until the date of anonymization of the data after data collection is finished. The

Independent Ethics Committee of the Medical Faculty and University Hospital Tübingen

approved the expert cohort of the study with the project number 394/2017BO2. All partici-

pants were informed in written form and consented verbally that their anonymous data can be

analyzed and published. Due to a self-constructed pseudonym, they had the option to revoke

this consent at any time.

Experimental paradigm

The experimental protocol for the students consisted of an initial calibration, task instruction,

then two image phases: Interpretation and Marking. The details of the experimental protocol

are found in Fig 1. Prior to the interpretation, a two second fixation cross was presented: This

served as baseline for our analysis. Then, an OPT was presented in the interpretation phase for

Table 1. Participant data overview.

Students Experts

N 50 26

Nglasses 12� 9

OPTs viewed/person 20 15

Total Datasets 750 390

Poor Tracking Ratio�� 14.3% 14.3%

� data regarding glasses for one collection is unknown

�� Percentage of poor data quality. Proportion of valid gaze points less than 80%.

https://doi.org/10.1371/journal.pone.0223941.t001
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90 seconds and the participant was instructed to only search for areas indicative of any pathol-

ogies in need of further intervention. The marking phase came after interpretation; where the

same OPT was shown with the instruction to only mark the anomalies found in the interpreta-

tion phase using an on-screen drawing tool. There was unlimited time for the marking phase

and participants could continue with a button click. This procedure was repeated for all OPTs.

In total, the students viewed 20 OPTs with a short break after the first ten.

The diagnostic task for the expert group was highly similar to that of the students. However,

it was determined that 90 seconds is too long of a duration for the experts, since much of the

previous literature has shown experts are faster at scanning radiographs [5, 20, 26, 27, 68, 70–

72]. Therefore, the exploration phase was shortened to a duration of 45 seconds. Additionally,

due their busy schedules, experts only viewed 15 OPTs, with a short pause after the first seven.

Both students and experts were unrestrained during the experiment, although they were

instructed to move their head as little as possible. Further details of one of the student data col-

lections can be found in Castner et al. [29] and expert data collections can be found in Castner

et al. [13].

Stimuli

OPT images. The 15 OPTs viewed by both the experts and the post-training course sixth

semester students were used for the current analysis to avoid effects from unseen images. The

OPTs were chosen from the university clinic database by the two expert dentists involved in

this research project and were determined to have no artifacts and technological errors. Both

dentists independently examined the OPTs and the patient workups and further consolidated

together to determine ground truths for each image. Two OPTS were negative (no anomalies)

controls.

Fig 1. Outline of experimental session. Initially, there was a calibration and procedural instructions. Then for each image, there is a

fixation cross for baseline data, the exploration phase (45s duration for experts and 90s for students), instructions for the marking phase,

and the marking phase (unlimited time). Students received two sets of 10 OPTs with a break in between and experts received one set of

15 OPTs with a break after the first seven.

https://doi.org/10.1371/journal.pone.0223941.g001
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Additionally, the level of difficulty for each anomaly was pre-determined. Fig 2 shows three

OPT images viewed in the experiment. Anomalies are illustrated in green, yellow, and red, and

represent easy, medium, and difficult, respectively. This classification was set up in a blinded

review and the consent process of two senior dentists (6th and 7th authors). For example, the

green anomalies in Fig 2A are dental cyst (1) and insufficient root canal fillings. (2a,b) in Fig

2C are an example of elongated lower molars due to missing antagonists. The yellow anomalies

in Fig 2B are irregular forms of the mandibular condyle (1,3) and (2) is an apical translucency

indicative of inflammation due to a contagious (bacterially colonized) root canal filling. The

red anomalies in this image are approximal caries (4) and a maxillary sinus mass. Anomalies

indicated by the white dashed circles were determined as ambiguous, e.g. the nature of their

difficulty and or pathology is unclear. For example, in Fig 2B (7,8) are impacted wisdom teeth,

though it is uncertain whether this will become a problem for the patient and therefore is

regarded as potentially pathologic. (6) is an apical translucency at the mesial root apex and it is

unclear whether it is indicative of an inflammation. Therefore, they were kept in this analysis

even though the nature of their difficulty is unclear.

Ground truth maps. We created maps for the 15 OPTs evaluated (See Fig 2C) using

Matlab 2018. As input, all OPTs were loaded as .png files with their respective anomalies—all

colored red. Thresholding for red values was performed to automatically get the pixel coordi-

nates of the ellipse edges. Then, the ellipses were filled with the poly2mask() function.

Anomalies automatically extracted from this process were double checked for overlapping and

had their boundaries corrected. Similar anomalies inside of another, such as (2a,b) in Fig 2C,

were grouped together as one anomaly. Other anomalies too close together and too different

in pathology, such as (3,8) in Fig 2C, were excluded from the analysis, due to possible spatial

accuracy errors in the gaze. Similarly, anomalies that were denoted by too small of an ellipse

were padded to have a larger pixel area, e.g. (4) in Fig 2B, to account for the spatial accuracy

Fig 2. OPTs with pre-determined ground truth. Example of the OPTs used in the experiment. Pre-determined ground truths are

indicated by the ellipses and their colors indicate the level of difficulty each anomaly is: Green (least difficult), yellow (intermediary), red

(most difficult) and white (nature of difficulty unclear). Image (D) is the ground truth map for image (B). Each anomaly is segmented

and given a distinguishing integer.

https://doi.org/10.1371/journal.pone.0223941.g002
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errors in the gaze. Each segmented anomaly is given a distinguishing integer for its respective

pixels. Raw gaze points from the left eye are then mapped to the map and gaze coordinates

receive the corresponding integer value.

Data acquisition

Environment. Data collection for students took place in a digital classroom equipped

with 30 remote eye trackers attached to laptops with 17inch HD display screens running at full

brightness. This setup allows for data collection of up to 30 participants simultaneously, mini-

mizing the overall time needed for collection. For this study, verbal instructions were given en

masse pertaining to a brief overview of the protocol and an explanation of eye tracking, then

individual calibrations were performed with a supervised quality check; students could then

run the experiment self-paced.

Data collection for the experts took place in the university hospital so the experts could con-

veniently participate during work hours. There, the room used for data collection was dedi-

cated for radiograph reading. The same model remote eye tracker was used for expert data

collection and was run with the same sampling frequency on a laptop with 17inch HD display

screen running at full brightness.

More important to the current study, both data collection environments had the room illu-

mination levels controlled with no effects from sunlight or other outdoor light. The standard

maintained illuminance for experimental sessions was between 10 to 50 lux, measured with a

lux sensor (Gossen Mavo-Max illuminance sensor, MC Technologies, Hannover, Germany). It

is advised that environment illumination during radiograph reading should be ambient (25–

50 lux) for the best viewing practices [73] and to optimize contrast perception in radiographs

[74–76]. Therefore, with room illumination controlled, we can evaluate pupillary response

independent of environmental illumination changes.

Laptops. Regarding the screen display, radiograph reading is not affected by the lumi-

nance of the display [75]. However, both the laptop models used for the experimental sessions

abided by the multiple medical and radiology commission standards [72, 73, 77]. The HP Z

Book 15 (for students) has screen brightness averages approx. 300cd/m2 [78]. The Dell Preci-

sion m4800 (for experts) averages approx. 380cd/m2 [79]. While the screen luminance was also

controlled and followed the standard protocols for viewing radiographs, the exact effect of the

screen brightness on the pupillary response is out of the scope of this work; rather the pupillary

response dependent on mental load during these reading task is the focus.

Eye tracker. The SMI RED250 remote eye tracker is a commercial eye tracker with 250Hz

sampling frequency and used for gaze data collection. We used the included software for both

the experiment design (Experiment Center) and event analysis (BeGaze). Since the eye tracker

has a high sampling frequency, both stable (fixations) and rapid (saccadic) eye movements for

static stimuli can be measured. Analysis was performed on the raw gaze data output from the

eye tracker: x and y coordinates with timestamps mapped to the screen dimensions. The raw

data points also have pupil diameter output in millimeters [80]. Although the data is raw and

has not been run through event detection algorithms, raw gaze points are labeled as fixation,

saccade, or blink.

Calibration was performed for all participants. A validation also was performed as a quality

check to measure the gaze deviation for both eyes from a calibration point: A deviation larger

than one degree constituted recalibration. Calibrations were performed prior to the experi-

ments as well as one or two times during the experimental session, depending on how many

images were presented.
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Data preprocessing

Quality of raw data. Only gaze data from the exploration phase was of interest to this

work since gaze data from the marking phase was affected by the use of the screen drawing-

tool. Initially, the raw gaze data was examined for signal quality. The eye tracker reports pro-

portion of valid gaze signal to stimulus time as the tracking ratio. Therefore, if a participant’s

tracking ratio for an OPT was deemed insufficient—less than 80%—we omitted his or her data

for this OPT. If overall, a participant had poor tracking ratios for more than three of OPTs he

or she viewed, all gaze data for that participant was removed. This preprocessing stage can

assure that errors (e.g. post-calibration shifts, poor signal due to glasses) in the gaze data are

substantially minimized. Table 1 gives the distribution of participants and the percent of data-

sets excluded due to low tracking ratio (last row). We started with 1140 data sets, but 199 data-

sets were initially excluded on the grounds of poor data quality.

Blink removal. The SMI-reported tracking ratio does not take into account when the eye

tracker detects a blink [80]. Nevertheless, inaccurately detected blinks created an alarming

number of cases with acceptable tracking ratios even though there was an inordinate amount

of undetected gaze. Fig 3a shows an example of a participant’s pupil size samples over time for

the left and right eye for an OPT presentation. This participant had a reported tracking ratio of

98%, but a large portion of the left eye gaze signal– approximately 33.5 seconds out of 90 sec-

onds—could be signal loss labeled as a blink. In contrast, Fig 3b shows a participant who also

has a high tracking ratio, though the data appears to be acceptable with typical blink durations

detected and little signal loss.

Consequently, the main issue stems from the apparent lack of a maximum blink duration

threshold. Extra criteria were necessary to further detect and exclude datasets with pupil signal

loss mislabeled as a blink. We overestimated the threshold for atypical blink durations, setting

this value to 5000 ms, to account for situations where a participant could possibly be rubbing

his or her eye/s or even closing the eye shortly. This threshold optimally maintains an accept-

able amount of pupil data for the entire stimulus presentation (90 or 45 seconds). Since base-

line data was sampled during the two seconds the fixation cross was displayed, we set the

threshold blink duration to 500 ms and added an extra criterion of a minimum 200 pupil sam-

ples to effectively extract enough samples for an acceptable pupil diameter baseline. Therefore,

570 datasets from 72 participants (48 students, 24 experts) were used for the final analysis.

Pupil diameter measurement. Data analysis was done for the left eye. For further signal

processing, we removed gaze coordinates and pupil data for the raw data points labeled as

Fig 3. Blink detection in the raw gaze data. (a) Low Data Quality Example (b) High Data Quality Example. The raw pupil signal of the

left and right eye (orange and blue dots) over the course of image presentation. Red and green dots in the lower part show when the eye

tracker labels the data point as a blink for the left and right eye, respectively. The particular subject in 3a had a high tracking ratio,

though many data samples could be incorrectly labeled as blinks. The participant in 3b also has a high tracking ratio and his or her data

appears to be acceptable quality.

https://doi.org/10.1371/journal.pone.0223941.g003
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saccades (since visual input is not perceived during rapid eye movements [3]). Data points

with a pupil diameter of zero or labeled as a blink were also removed. Additionally, data points

100 ms before and after blinks were removed, due to pupil size distortions from partial eye-lid

occlusion. Lastly, the first and last 125 data points in the stimulus presentation were removed

due to stimulus flickering [81–83]. The remaining data was smoothed with a third order low-

pass Butterworth filter with a 2Hz cutoff as illustrated by the purple data points in Fig 4.

Gaze hit mapping. For both students and experts, we plotted the raw gaze points that

landed in each anomaly and extracted its level of difficulty. For simplicity, we will refer to

them as gaze hits. For all hits on an anomaly for a participant, we calculated the median pupil

diameter. The median pupil diameter for each anomaly was then subtracted from the respec-

tive baseline data for that image. We performed subtractive baseline correction because it has

been found to be a more robust metric and have higher statistical power [63]. Therefore, the

difference from baseline could indicate diameter increase (positive value) or diameter decrease

(negative value) compared to baseline.

With the gaze hits on anomalies of varying difficulties, we can evaluate the pupillary

response of both experts and students during anomaly fixations. The pupillary response, as

measured by change from baseline, can then provide insight into the mental/cognitive load

both groups are undergoing while interpreting the anomalies.

Results

Overall change from baseline

Independent of gaze on anomaly difficulty, we looked at participants’ median pupil diameter

for each image compared to baseline median pupil diameters. We favored the median over the

mean because it has greater robustness towards noise and outliers. Fig 5a shows the average of

the median pupillary response from baseline for both students and experts. Overall, students

Fig 4. Smoothed pupil signal. Raw signal from the left eye (orange) and the smoothed signal (purple) with a Butterworth filter with 2Hz

cutoff.

https://doi.org/10.1371/journal.pone.0223941.g004
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(M = 0.314, SD = 0.315) had a larger increase from baseline than experts (M = 0.057,

SD = 0.353: t(568) = −8.824, p< 0.001). We also performed a supplementary analysis to rule

out any effects that fatigue could have on the pupillary response (see S1 Fig).

Gaze on anomalies

To evaluate whether anomaly difficulty had an effect of student and expert pupillary response,

we ran a 2 × 4 factor ANOVA to test for expertise and anomaly difficulty interactions. There

was a main effect for expertise (F(1, 1388) = 161.68, p< 0.001) indicating that students had a

larger increase from baseline than experts. There was also an effect for anomaly difficulty (F(3,

1388) = 3.87, p = 0.009) indicating that there was a larger increase in pupil size from baseline

for more difficult anomalies. There was a significant interaction between expertise and anom-

aly difficulty (F(3, 1388) = 2.76, p = 0.041). There were no significant effects of anomaly diffi-

culty on student pupillary response. However, there were significant effects of anomaly

difficulty on expert pupillary response. Fig 5b details the pupillary response of experts and nov-

ices on the varying anomaly difficulties.

Post hoc analyses with Bonferroni correction for anomaly difficulty on the expert data

revealed significant differences for the more difficult anomalies (M = 0.246, SD = 0.370) com-

pared to least difficult (M = 0.0514, SD = 0.396, t(207) = −3.0582, p = 0.003) and ambiguous

(t(150) = 3.1796, p = 0.002). There were no significant differences for medium anomalies

(M = 0.1259, SD = 0.3904) compared to the difficult (t(200) = 1.8989, p = 0.059). Meaning,

experts had the largest pupil size change from baseline for more difficult anomalies, especially

compared to least difficult and ambiguous anomalies.

Discussion

Students showed larger and more homogenous pupil size change from baseline for all anomaly

gradations compared to experts. Thus for students, pupillary response was independent of

whether an anomaly was easy or difficult to interpret. This effect was also found during visual

inspection of the whole image (Fig 5a), where students had overall greater change from

Fig 5. Pupillary response of experts and novices during visual Inspection. (a) Median Pupil Change From Baseline for Experts and

Novices. (b) Median Pupil Change From Baseline for Gaze on Anomalies. The median pupil diameter change from baseline for students

(blue bars) and experts (red bars) for the overall image behavior (5a) and when gazing on anomalies of varying difficulty (5b). Standard

errors are indicated in black. Students had larger pupillary response from baseline compared to experts, but this effect was homogeneous

for the differing anomalies. Whereas experts showed an increased pupillary response behavior as an effect of increasing difficulty.

https://doi.org/10.1371/journal.pone.0223941.g005
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baseline compared to experts. Pupillary response differences between students and experts

have been supported by the previous literature [49, 50, 65–67, 84]. However, the more interest-

ing takeaway from this work is the lack of influence of anomaly gradation on student cognitive

processing. One would imagine that even the most pronounced of anomalies would make the

recognition process easier. Our findings from student pupillary response indicate that, regard-

less of how conspicuous, the level of mental workload remains constant.

Conversely, experts showed a strong pupillary response to anomaly gradation. The least dif-

ficult to interpret anomalies showed less change from baseline, then the intermediary anoma-

lies, and finally the largest response was for the most difficult anomalies (Fig 5b). Meaning, as

the gradation of difficulty increases so does the pupillary response. This behavior, however,

was not evident for the ambiguous anomalies, which showed the smallest response change

from baseline. This effect may lie in the nature of the uncertainty of these anomalies. As deter-

mined by the two experts involved in the project, this category was a mixture of potential areas

that may or may not have included an anomaly: Or even an anomaly, but with no cause for

alarm. Therefore, it is uncertain how difficult, easy, or even existing these anomalies were.

Cognitive load is often used to explain findings regarding learning [23, 31, 36, 62]. For

instance, Tien et al. [65] found that novices reported higher memory load compared to experts

performing the same task. This behavior can be likened to students’ lack of conceptual knowl-

edge and experience, producing them to “think harder” [85, 86] to interpret these images. Fur-

thermore, large pupil size can be reflective of learning during the task [23, 37, 41, 43, 47, 82].

During learning, students are developing the proper memory structures as theorized by Erics-

son and Kintsch [16] and Sweller [31]. Additionally, their pupillary response could reflect that

they have not yet developed the conceptual knowledge to quickly recognize the image features

indicative of the specific anomalies or how to interpret their underlying pathologies. Even for

easy anomalies, they may be unsure of whether they accurately interpreted it or not. Uncer-

tainty as well as perceived task difficulty have been found to affect the pupillary response, and

acquired knowledge has been shown to reduce uncertainty and perceived difficulty [32, 56].

Moreover, prior knowledge to a problem has been shown to reduce cognitive load [31, 36, 41,

50].

Cognitive load can also be indicative of inefficient reasoning strategies. Efficient reasoning

strategies reduce load on working memory, in turn enhancing performance [30]. Patel et al.

[33] found that when novices interpreted clinical case examinations, they tended to employ

reasoning strategies that have been known to elicit higher workload. Our findings also suggest

that students may employ similar cognitive strategies that evoke higher load for all anomaly

gradations. Comparatively, experts employ more efficient strategies; however, they are more

sensitive to task features.

In general, as task difficulty increases, so does the workload [64] and correspondingly, the

pupil dilation [30, 43, 87, 88]. With increasingly difficult stimuli, Duchowski et al. [89] also

showed increased cognitive load via microsaccade rates during decision making. However,

Patel et al. [34] found more cognitive load in physicians when examining more complicated

case examinations. When expert dentists perform a visual inspection of an OPT, they gaze in

many areas that potentially have a multitude of differing pathologies or even positional and

summation errors. Depending on the gradation of the area they are focusing on, proper inter-

pretation may need to evoke adaptations in the decision-making strategies. Our findings show

that experts dentists are capable of this adaptability during the course of visual inspection of

OPTs.

Gaze behavior in expert dentists was also shown to change with difficult images [13, 68].

The current work went one step further and found changes within the visual search of an OPT

in contrast to the overall response to image interpretation. Kok et al. [46] found that expertise
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reflected visual search strategies employed. Top-down strategies that experts generally employ

use acquired knowledge and understanding of the current problem to focus on the relevant

aspects of an image to quickly and more accurately process it [24, 90, 91]. Whereas bottom-up
strategies that student generally employ is less efficient, as focus is on salient, noticeable images

features, regardless of relevancy [20, 46, 91]. Furthermore, systematic search (inspecting all

features of an image in a pre-determined orders) evokes more load on the working memory

[20, 27]. However, students are generally trained to perform this type of search when they first

get exposed to these images [72, 90].

An expert generally knows in what areas of the OPT anomalies are prevalent and how they

are illustrated in the image features. Therefore, an expert can quickly recognize an image fea-

ture as a specific anomaly. In contrast to overall visual inspection—where experts showed low

pupillary response compared to students—when inspecting specific areas, pupil dilation fluc-

tuation can be indicative to changes in their cognitive processes to accommodate more com-

plex features. Naturally, interpretation of medical images is not trivial and certain image or

pathology features can avert the true diagnosis. Experts are more robust at determining more

difficult or subtle anomalies [11, 27, 68, 72, 92]. Although when anomalies become harder to

interpret, experts evoke pupillary response indicative of increasing task-difficulty, leading to

behavior that is likely of more thorough inspection.

Limitations and future work

It should be noted that there were age differences between the two groups. Due to the sensitiv-

ity of the expert demographic data, we did not record their ages; but we expect them to be

older than their student counterparts. Age has been found to have an effect on the average

pupil size [48, 52]. For this reason, we measured a change from baseline to control such for age

effects. Additionally, Van Gerven et al. [51] found that pupillary response to workload in older

adults (early seventies) is not as pronounced as in younger adults (early twenties). Though we

cannot say exactly how old our expert population was, they were all still working in the clinic

and therefore more than likely to be younger than early seventies. Also, their years of experi-

ence in the clinic (average of 10 years) suggests they were more middle aged (30 to 45 years

old). Further research is needed to better address this limitation and control for possible age

difference effects on pupillary response.

Another limitation to this work could be the technical problems associated with the eye

tracker data collection. We systematically removed data sets determined as poor quality; how-

ever, spatial resolution errors can accumulate within an experimental session if a participant

moves too much. Then, the gaze appears to have a shifted offset, which would affect precision.

Multiple calibrations during collection help with precision. We also increased the areas of

smaller ground-truth anomalies and excluded anomalies that were too close and too different

in nature. The total gaze hits on each type of anomaly were not evenly distributed, with more

gaze hits on easier and intermediary anomalies (See S1 Table in Supporting Information). Stu-

dents used more total gaze hits due to longer OPT presentation time, but the distributions

were highly similar to experts. Future research could further untangle the differences in gaze

hits on easier and difficult anomalies, while controlling for presentation time differences.

The temporal scanpath information is also an interesting direction for future research, i.e.

systematic search in students and its effect on workload and pupillary response. For example,

how often do “look backs” on anomaly areas occur and does the pupil dilation increase with

each look back. Also, whether easy or more conspicuous anomalies are viewed at first and how

the pupillary response in students incorporates this initial information. Following up on the

PLOS ONE Pupil diameter differentiates expertise in dental radiography visual search

PLOS ONE | https://doi.org/10.1371/journal.pone.0223941 May 29, 2020 13 / 19



understanding that systematic search produces more memory load as measured by pupil dila-

tion [93], would also be interesting to replicate with temporal information from our findings.

Conclusion

We measured pupil diameter change from baseline when gazing on anomalies of varying diffi-

culty during visual search of dental panoramic radiographs. We found that the gradation of

anomalies in these images had an effect on expert pupillary response. Anomaly gradation did

not have an effect on student pupillary response, which suggests higher workload and less sen-

sitivity to complex features compared to experts. Experts are able to selectively allocate their

attention to relevant information and is evident in the pupillary response. However, selective

attention coupled with focus on features perceived as challenging can increase the pupil dila-

tion as we found in our investigation. Although a majority of expert studies have established

that experts are more robust at accurately solving their domain-specific tasks than their stu-

dent counterparts [5, 16, 24, 91], increased pupillary response during difficult anomaly inspec-

tion supports adaptable processing strategies.

With more insight into expert decision-making processes during visual search or medical

images, appropriate learning interventions can be developed. These interventions can incorpo-

rate not only the scanpath behavior, but also the cognitive load during appropriate detection

of pathologies. From this combination, image semantics can be better conveyed to the learner.

Training sessions that convey the appropriate information through adaptive gaze interventions

based on cognitive load detection via the pupillary response offers a promising direction in

medical education.

Supporting information

S1 Fig. Pupillary response over course of experiment. The average pupillary response from

baseline for students (blue bars, 20 images total) and experts (red bars, 15 images total) during

the first set of OPTs presented and the second set of OPTs presented. Their is no effect in the

pupillary response that could be attributed to fatigue during the experiment.

(PDF)

S1 Table. Table of Expert and Student Gaze Counts. Shows the gaze hits on each anomaly

type for both students and experts. For both levels of expertise, the least difficult and intermedi-

ate have the most gaze hits. The following are the ambiguous and the most difficult anomalies.

Students had overall more gaze hits than experts; however, this may be attributed to the 90 sec-

ond viewing time they had in comparison to the 45 second viewing time that the experts had.

(PDF)
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49. Brunyé TT, Eddy MD, Mercan E, Allison KH, Weaver DL, Elmore JG. Pupil diameter changes reflect dif-

ficulty and diagnostic accuracy during medical image interpretation. BMC medical informatics and deci-

sion making. 2016; 16(1):77. https://doi.org/10.1186/s12911-016-0322-3 PMID: 27378371

50. Szulewski A, Roth N, Howes D. The use of task-evoked pupillary response as an objective measure of

cognitive load in novices and trained physicians: a new tool for the assessment of expertise. Academic

Medicine. 2015; 90(7):981–987. https://doi.org/10.1097/ACM.0000000000000677 PMID: 25738386

51. Van Gerven PW, Paas F, Van Merriënboer JJ, Schmidt HG. Memory load and the cognitive pupillary

response in aging. Psychophysiology. 2004; 41(2):167–174. https://doi.org/10.1111/j.1469-8986.2003.

00148.x PMID: 15032982

52. Winn B, Whitaker D, Elliott DB, Phillips NJ. Factors affecting light-adapted pupil size in normal human

subjects. Investigative ophthalmology & visual science. 1994; 35(3):1132–1137.

53. van der Wel P, van Steenbergen H. Pupil dilation as an index of effort in cognitive control tasks: A

review. Psychonomic bulletin & review. 2018; 25(6):2005–2015. https://doi.org/10.3758/s13423-018-

1432-y

54. Porter G, Troscianko T, Gilchrist ID. Effort during visual search and counting: Insights from pupillometry.

The Quarterly Journal of Experimental Psychology. 2007; 60(2):211–229. https://doi.org/10.1080/

17470210600673818 PMID: 17455055

55. Backs RW, Walrath LC. Eye movement and pupillary response indices of mental workload during visual

search of symbolic displays. Applied ergonomics. 1992; 23(4):243–254. https://doi.org/10.1016/0003-

6870(92)90152-L PMID: 15676872

56. Geng JJ, Blumenfeld Z, Tyson TL, Minzenberg MJ. Pupil diameter reflects uncertainty in attentional

selection during visual search. Frontiers in human neuroscience. 2015; 9:435. https://doi.org/10.3389/

fnhum.2015.00435 PMID: 26300759

57. Takeuchi T, Puntous T, Tuladhar A, Yoshimoto S, Shirama A. Estimation of mental effort in learning

visual search by measuring pupil response. PloS one. 2011; 6(7):e21973. https://doi.org/10.1371/

journal.pone.0021973 PMID: 21760936

58. Lowenstein O, Feinberg R, Loewenfeld IE. Pupillary movements during acute and chronic fatigue: A

new test for the objective evaluation of tiredness. Investigative Ophthalmology & Visual Science. 1963;

2(2):138–157.

59. Murata A. Assessment of fatigue by pupillary response. IEICE TRANSACTIONS on Fundamentals of

Electronics, Communications and Computer Sciences. 1997; 80(7):1318–1323.

60. Abokyi S, Owusu-Mensah J, Osei K. Caffeine intake is associated with pupil dilation and enhanced

accommodation. Eye. 2017; 31(4):615. https://doi.org/10.1038/eye.2016.288 PMID: 27983733

61. Bradley MM, Miccoli L, Escrig MA, Lang PJ. The pupil as a measure of emotional arousal and auto-

nomic activation. Psychophysiology. 2008; 45(4):602–607. https://doi.org/10.1111/j.1469-8986.2008.

00654.x PMID: 18282202

62. Gerjets P, Scheiter K, Catrambone R. Designing instructional examples to reduce intrinsic cognitive

load: Molar versus modular presentation of solution procedures. Instructional Science. 2004; 32(1-

2):33–58. https://doi.org/10.1023/B:TRUC.0000021809.10236.71

PLOS ONE Pupil diameter differentiates expertise in dental radiography visual search

PLOS ONE | https://doi.org/10.1371/journal.pone.0223941 May 29, 2020 17 / 19



63. Mathôt S, Fabius J, Van Heusden E, Van der Stigchel S. Safe and sensible preprocessing and baseline

correction of pupil-size data. Behavior research methods. 2018; 50(1):94–106. https://doi.org/10.3758/

s13428-017-1007-2 PMID: 29330763

64. Zheng B, Jiang X, Atkins MS. Detection of changes in surgical difficulty: evidence from pupil responses.

Surgical innovation. 2015; 22(6):629–635. https://doi.org/10.1177/1553350615573582 PMID:

25759398

65. Tien T, Pucher PH, Sodergren MH, Sriskandarajah K, Yang GZ, Darzi A. Differences in gaze behaviour

of expert and junior surgeons performing open inguinal hernia repair. Surgical endoscopy. 2015; 29

(2):405–413. https://doi.org/10.1007/s00464-014-3683-7 PMID: 25125094

66. Szulewski A, Kelton D, Howes D. Pupillometry as a Tool to Study Expertise in Medicine. Frontline

Learning Research. 2017; 5(3):53–63. https://doi.org/10.14786/flr.v5i3.256
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Supporting information

S1 Fig. Pupillary Response over Course of Experiment. The average pupillary response from baseline
for students (blue bars, 20 images total) and experts (red bars, 15 images total) during the first set of OPTs
presented and the second set of OPTs presented. Their is no effect in the pupillary response that could be
attributed to fatigue during the experiment.
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Figure 1: Pupillary Response for first and sectond set of images.

S1 Table. Table of Expert and Student Gaze Counts. shows the gaze hits on each anomaly type for
both students and experts. For both levels of expertise, the least difficult and intermediate have the most gaze
hits. The following are the ambiguous and the most difficult anomalies. Students had overall more gaze hits
than experts; however, this may be attributed to the 90 second viewing time they had in comparison to the 45
second viewing time that the experts had.

Table 1: Raw Gaze Count on Anomaly.
Anomaly Type Less Difficult Intermediate More Difficult Ambiguous
Total 471 448 173 304
Student 312 296 124 202
Expert 159 152 49 102
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ABSTRACT
Modeling eye movement indicative of expertise behavior is decisive
in user evaluation. However, it is indisputable that task semantics
affect gaze behavior. We present a novel approach to gaze scan-
path comparison that incorporates convolutional neural networks
(CNN) to process scene information at the fixation level. Image
patches linked to respective fixations are used as input for a CNN
and the resulting feature vectors provide the temporal and spatial
gaze information necessary for scanpath similarity comparison. We
evaluated our proposed approach on gaze data from expert and
novice dentists interpreting dental radiographs using a local align-
ment similarity score. Our approach was capable of distinguishing
experts from novices with 93% accuracy while incorporating the
image semantics. Moreover, our scanpath comparison using image
patch features has the potential to incorporate task semantics from
a variety of tasks.
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1 INTRODUCTION
Through eye movements, our thoughts, motivations, and expertise
can be distinguished. We can accurately classify what someone is
looking at and, more important, in what context they are looking
at it, simply from the patterns in our gaze behavior. Eye-tracking
data is, however, still subject to large intra- and inter-individual
variance. Neither two subjects are likely to look at a given stimulus
in an identical way, nor is the same person likely to exhibit the
identical gaze sequence when looking at the same stimulus twice.
This variability becomes non-trivial when developing online sys-
tems that can recognize specific groups: e.g., distinguish experts
from novices or doing performance prediction.

We measure these distinct gaze patterns as a scanpath: Areas
of focus (fixations) where the eye behavior remains relatively still
before moving to another area via a rapid eye movement (sac-
cade) [Holmqvist et al. 2011]. Discriminating scanpaths necessitates
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Figure 1: Matching image patch descriptors are recognized
as similar across stimuli. When three different participants
fixate on the left temporomandibular joint, the feature de-
scriptors from DeepScan value them as similar. In contrast
to when these participants fixate elsewhere, e.g. teeth, roots,
etc.

effective ways of aggregating and averaging gaze data over multi-
ple trials to achieve converging summarizations of representative
scanpaths (e.g. attention density maps [Le Meur and Baccino 2013]).

Such aggregation techniques are simple to implement as long as
subjects view the same stimulus from the same perspective, e.g., an
image on a computer screen. Although, when either aggregation
over a range of different stimuli or dynamic stimuli is required,
analysis becomes challenging. For instance, semantically identical
regions – also known as areas of interest (AOIs) – with regard to the
studied task have to be identified and annotated. Once annotated,
the sequence of AOIs visited by gaze can be analyzed as a proxy
representation of the scanpath.

However, even though it is apparent that task and subject dif-
ferences affect scanpaths, often accurate prediction is still elusive.
Greene et al. [Greene et al. 2012] failed to predict an observers’
task from their gaze behavior using sequence information from
manually defined AOIs. Additionally, when aggregating the scan-
path data, [Borji and Itti 2014] found they still could not accurately
classify the task. Prediction increased in [Kanan et al. 2014] when
considering the scanpath as a collection of features representing a
fixations position and duration. Finally, the largest improvement in
prediction performance was found when training an HMM model
per stimulus [Haji-Abolhassani and Clark 2014]. Although it was
accurate and incorporated spatial information, it has constrained
applicability across stimuli.

In order to apply task or subject prediction from scanpath in-
formation, conventional approaches that handle one image, one
subject, or both are not feasible. One realm in particular that has
shown promising potential for gaze behavior is training of medical
personnel [Gegenfurtner et al. 2011; Van der Gijp et al. 2017; Waite
et al. 2019]. For instance, gaze analysis has often been proposed as
a measure for adaptive training systems (i.e. searching radiographs
for pathologies [Jarodzka et al. 2012, 2010b], practicing surgery or
laproscopy in VR/AR [Law et al. 2004]). However, actually working

training procedures are still scarce. Massed practice approaches,
i.e., lengthy viewing of hundreds of radiographs, is still common
educational practice [Rozenshtein et al. 2016]. Even though it has
been available for decades, as of now eye-tracking has yet to deliver
the promises for adaptive training. The challenge of expediting a
novice to expert solely through training gaze behavior has yet to
be fully operational [Van der Gijp et al. 2017].

In this work, we show how to incorporate high-level, deep neu-
ral network-generated image patch representations into classical
scanpath comparison measures. We apply our method DeepScan to
expertise classification on an eye movement dataset of expert and
student dentists. Dentistry, in particular, relies heavily on effective
visual inspection and interpretation of radiographs [Huettig and
Axmann 2014]. Even then, panoramic dental radiographs are highly
susceptible to diagnostic error [Akarslan et al. 2008; Bruno et al.
2015; Douglass et al. 1986; Gelfand et al. 1983]. We demonstrate
our method by decoding expertise from eye movements during
dental radiograph inspection, which is a crucial first step towards
adaptive learning procedures. It is worth noting, this metric is not
confined to dental expertise recognition, rather developed with the
intention for various use cases. It offers the future potential to as-
sess student’s learning progress in real-time and to adapt stimulus
material based on current aptitude, while not being restricted to
the stimulus material used during creation of the classifier.

2 REVISITING VISUAL SCANPATH
COMPARISON

2.1 Traditional Approach: String Alignment
One of the most common and traditional approaches to scanpath
comparison is extraction of a similarity score by representing a
scanpath as a sequence of symbols and comparing the resulting
string to one another [Anderson et al. 2015]. AOIs on a given stimuli
can be semantically or structurally linked to a symbol [Cristino et al.
2010; Goldberg and Helfman 2010; Jarodzka et al. 2010a; Kübler et al.
2014]. Thus, coded strings provide information on the temporal and
spatial order of the user’s gaze behavior. Temporal resolution (i.e.
fixation duration) can also be factored into the sequence [Cristino
et al. 2010].

The output of such a comparison – the similarity score – is
based on a total derived from rewarding matches and penalizing
mismatches or gaps1. A scoring matrix can be used to represent
the relative similarity of characters to one another [Baichoo and
Ouzounis 2017; Day 2010; Goldberg and Helfman 2010]. A positive
matching score represents similar regions and a negative score mis-
matches. Gaps are inserted in order to make neighboring characters
match and to compensate small shifts of highly similar segments
between the sequences.

Global sequence alignment with a notion of AOI similarity can
be performed via the Needleman-Wunsch algorithm [Anderson
et al. 2015; Needleman and Wunsch 1970]. Global sequence align-
ment determines the most optimal alignment for the entirety of
two sequences. It has been shown to be a robust metric in scanpath
comparison, e.g. in ScanMatch [Cristino et al. 2010], classification

1inserting a space into one of the sequences.
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of attentional disorder [Galgani et al. 2009], multiple scanpath se-
quence alignment [Burch et al. 2018], and expert and novice pro-
grammer classification [Busjahn et al. 2015]. Castner et al. [Castner
et al. 2018a] found incoming dental students with no prior training
in radiograph interpretation could be classified from later semester
students with 80% accuracy from Needleman-Wunsch similarity
scores.

Similarly, scanpath similarity from local sequence alignment has
often been used as a robust classifier. Rather than deal with the
entirety of two sequences, local alignment determines the most
optimal aligned subsequence between the two. Local alignment
compensates to a greater degree for sequences of differing lengths
and is not as strongly influenced by differences in the beginning or
end of the sequences [Khedher et al. 2018]. For example, [Khedher
et al. 2018] used the Smith-Waterman algorithm [Smith et al. 1981]
for local alignment of medical undergrads’ scanpaths during a clin-
ical reasoning task. They found similarly well performing students
had highly correlative scores. Similarly, [Çöltekin et al. 2010] found
high comprehension and scanpath similarity of local subsequences
in reading interactive map displays.

Determining the optimal alignment between two sequences is
computationally costly. Additionally, though commonly used, these
methods suffer from a severe drawback: The manual selection
of AOIs. This process is subjective, not only in which AOIs are
considered relevant for the analysis, but also with regard to their
size [Cristino et al. 2010; Jarodzka et al. 2010a]. For instance, Deit-
elhof et al. [Deitelhoff et al. 2019] found that scanpath transitional
information can be highly impacted by the AOI size and padding,
which can affect validity. Moreover, some measures (e.g. Leven-
shtein distance) only rate exact matches and mismatches and do
not consider any potential AOI similarity - and the ability of an
algorithm to include this introduces the additional hard problem of
judging AOI similarity objectively.

Much of the prior literature on scanpath comparison using se-
quence alignment have employed manual AOI definitions. However,
these approaches suffer errors in spatial resolution or require task-
subjective AOI labels [Cristino et al. 2010; Jarodzka et al. 2010a].
Kübler et al. [Kübler et al. 2014] developed a method –SubsMatch–
for sequence comparison without AOI definitions, which uses a
bag-of-words model and looks at the transitional behavior of subse-
quences. Castner et al. [Castner et al. 2018a] used these subsquence
transitions from SubsMatch with an SVM Classifier [Kübler et al.
2017] and found comparable results to sequence alignment with
grid AOIs.

However, these automatic approaches lack any notion of what is
actually being looked at. Therefore, they usually perform excellent
when subjects view the exact same stimulus (because then location
identity corresponds to semantic identity to some extent). But when
performing cross-stimulus analysis or the stimulus is subject to
noise, performance drops significantly.

As of now, gaze pattern comparison is based either only on
gaze location – not on the semantic object that is being looked at
– or relies on human annotation to determine the semantics. Yet,
scene semantics are absolutely critical for judging gaze behavior.
For larger experiments and in the wild head-mounted eye tracker
data [Pfeiffer et al. 2016; Wan et al. 2018], manual annotation is

unfeasible. We propose a method that combines the traditional ap-
proach of sequence alignment with deep learning for fixation target
understanding. Combining these methods enables us to understand
(and automatically analyze) the semantics behind a scanpath.

2.2 Current Directions: Deep Learning
Convolutional neural networks (CNNs) can provide information
of image semantics that can be used for segmentation [Chen et al.
2017; Long et al. 2015] or classification [Krizhevsky et al. 2012] and
saliency prediction [Hong et al. 2015; Huang et al. 2015], and many
other applications. In the field of eye tracking research, they have
also provided robust performance in eye movement behavior and
scanpath generation [Assens Reina et al. 2017; Liu et al. 2015]. For
instance, methods using probabilistic models and deep learning
techniques coupled with ground truth gaze behavior have been
shown to predict fixation behavior [Kümmerer et al. 2015; Wang
et al. 2015].

Concerning human scanpath classification, [Fuhl et al. 2019]
encoded gaze data as a compact image with the spatial, temporal,
and connectivity represented as pixel values in the red, green, and
blue channels respectively. These images were input for a CNN
classifier, which showed high accuracy in classifying task-based
gaze behavior. Mishra et al. [Mishra and Bhattacharyya 2018] fol-
lowed a similar approach of depicting scanpath information as an
image for a CNN sarcasm detector.

Tao and Shyu [Tao and Shyu 2019] offer an approach similar to
our proposed approach. They developed a CNN-Long Short Term
Memory (LSTM) network that runs on scanpath-based patches from
a saliency-predicted map2 and classifies typical/autism spectrum
disorder gaze behavior [Tao and Shyu 2019]. Square patches are de-
fined based on fixation positions as they occur in the scanpath. Then,
each patch is run through a shallow CNN, and the patch feature
vector with the duration information provides an LSTM network
input for classification from a dense layer from each patch [Tao and
Shyu 2019]. Most notable, they maintain the sequential information
of the scanpath.

We utilize powerful Deep Neural Network(DNN)-based feature
descriptors to represent the semantics of a gaze sequence (scanpath).
Our proposed approach follows a similar idea of incorporating the
sequential fixation information in conjunction with visual features
using a CNN. However, we extract scanpath similarity from the
culmination of image patch features using the traditional approach
of sequence alignment. For the current work, we chose local align-
ment in order to focus on common subsequences that could be
indicative of expertise. Then, we cluster the scanpaths based on this
similarity. Subsequently, we evaluate our proposed approach on
detecting expert and student dentists’ scanpaths when inspecting
dental radiographs.

3 PROPOSED APPROACH
3.1 Image Features at the Fixation Level
Each individual fixation corresponds to a visual intake of a certain
stimulus region. We then encode each fixation location on the
specific stimulus image by a vector that describes the local image

2ASD specific saliency prediction from the Saliency4ASD challenge.
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Figure 2: ProposedModel: DeepScan. For a scanpath, we extract the fixation locations and, using the VGG-16 CNN architecture,
we create a feature corresponding to an image patch relative to the ith fixation F(fi ). The resulting vector illustrating the scan-
path S can then be compared to another scanpath vector. In our work, we compared scanpaths via local alignment similarity.
The pre-trained VGG-16 network consist of 5 blocks of convolutions with ReLus with max-pooling between each layer.

region. We generate such encodings via the output from the VGG-
16 architecture [Simonyan and Zisserman 2014]. Accordingly, for
each fixation location on the stimulus image, we extract a patch
of 100 × 100 pixels as input to the network. This step is relatively
similar to [Tao and Shyu 2019], although we determined that using
a fixed size bounding box is adequate for our stimuli. The fixation
coordinates indicate the center of the bounding box of the image
patch, unless a fixation is too close to the stimulus borders. Then,
appropriate shifting of the box along the x or y axis is necessary.

The architecture we employed for patch processing originally
takes 224 × 224 RGB input images. For the current evaluation on
experts and students searching dental radiographs, our stimuli were
grayscale with pixel dimensions 1920 × 1080. In development, we
determined that patch sizes of 224 × 224 for our stimuli were too
large (e.g. four or more teeth would be in this sized area). Smaller
patches were more preferable so that enough information from
an entity is extracted. Therefore, we rescaled the 100 × 100 image
patches to the desired input size for the network, and replicated
the one channel image information to get three channels that can
utilize the weights pre-trained on ImageNet [Deng et al. 2009].

However, image patch input size and channels could be adapted
for other stimuli or any other preferred network for the fixation
encodings. The takeaway from this image patch approach is that
through only the gaze: 1) we map the image features of interest
in temporal order, and 2) we can extract the semantics from these
features.

3.2 CNN Architecture
For patch descriptor extraction, we employed a VGG-16 network [Si-
monyan and Zisserman 2014] as implemented in keras3 and pre-
trained on ImageNet. Figure 2 shows the network: Consisting of
five blocks of convolutions, with each block followed by ReLUs and
max-pooling.

3Python 3.6 with GPU compatibility.

Since we are only interested in the features, we omit the fully-
connected and prediction output layers of the model and use the
output after max-pooling, which has 7 × 7 × 512 dimensions, and
flatten it to a 1× 1× 25088 vector. This feature description from the
final convolutional layer, F(fi ), represents the image patch at the
ith fixation fi .

The feature descriptors provide the semantic information for
each fixation in a user’s scanpath and are the equivalent to a symbol
representation in the traditional string-sequence representation. In
the following, we discuss the changes required in the alignment
algorithm in order to work with alignment scores generated by
comparing these image features to each other. Figure 1 shows an
example of how similar features can compare to each other.

We chose the VGG-16, in contrast to a network pre-trained on
radiology images since it is more generalizable to a variety of tasks
and stimuli. Additionally, it is publicly available and easily inte-
grated for replication purposes. Pre-trained networks for medical
images are often not publicly available due to the data sensitivity
and protection, and any existing architectures for these images
are not yet up to par with the generic image trained architectures.
Choosing a network that is trained for a specific stimulus category,
e.g., panoramic radiographs or other X-Rays, might improve results.
However, it introduces the risk of limiting data analysis to specific
elements, which is comparable to manual AOI selection. Ultimately,
though our approach is evaluated on medical image expertise, we
developed it for generalizability in multiple applications.

3.3 Local Alignment
Once we have descriptors for each fixation, we assemble them as
a scanpath. The resulting matrix of image features at each fixa-
tion creates a scanpath matrix. SA = (Ff1 , Ff2 , · · · , FfN ). With this
matrix representation, we can compare its similarity to the matrix
representing another scanpath.
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For scanpath comparison, we perform local alignment using a
variant of the Smith-Waterman Algorithm. We preferred local align-
ment scoring over global alignment due to its ability to find similar
subsequences, even if the scanpaths may otherwise be highly vary-
ing [Khedher et al. 2018]. Moreover, we did not want to enforce
strict global alignment due to different viewing times required
by students and experts. In sequence alignment, the penalty sys-
tem can have a major effect on values in the scoring matrix, and
therefore, the similarity score [Baichoo and Ouzounis 2017]. Our
scoring choice prioritizes finding long rather than short similar sub-
sequences by accumulating scores. Equation 1 details the scoring
system used for the current evaluation:

Mi j = max




Mi−1, j−1 + c −
∑
i, j

|A:Fj − B:Fi |, Match

Mi, j−1 − дap, Gap in A
Mi−1, j − дap, Gap in B
0 No Similarity.

(1)

WhereM is the scoring matrix of size (n + 1) × (m + 1) for two
scanpaths A and B with n and m fixations respectively. Element
Mi, j takes the maximum value based on if there is a match between
the values at index j of scanpath A and index i of scanpath B. The
original algorithm scores matches as the score value added to the
value at the previous indices:Mi−1, j−1+score(aj ,bi ). Then, if there
is no match, it determines whether the value of a gap penalty (дap)
in either scanpath, or no similarity (0) are more optimal for the
score.

The interesting part of our approach is contained in the calcula-
tion of the match score. Since it is highly unlikely that two features
will be exactly the same, we cannot explicitly match or mismatch.
Therefore, we calculate the score by taking the sum of absolute
differences in feature descriptor j of scanpath A and descriptor i of
scanpath B as shown in the first line of equation 1. This is simple to
implement and cheap to compute, but other metrics such as cosine
or Euclidean distance could also be used. This procedure leads to a
dissimilarity score between the image patches. The more dissimilar
the image patches, the larger the scoring value.

In order to convert it to a similarity score, we can subtract the
dissimilarity score from a constant c . We calculated c in equation
1 by averaging the sum of the differences for all features between
all scanpaths of one random image in the dataset. Therefore, c was
21, 049 in the evaluation of our proposed approach. This constant
affects highly similar image patches positively, but highly dissimi-
lar image patches are penalized negatively with the same weight.
Meaning it functions similar to a match/mismatch threshold. Addi-
tionally, we set our gap penalty (lines 2 and 3 in eq.1) to 42, 000 to
highly penalize gaps, therefore almost double c .

This choice of c makes the algorithm consider about half of
the image patches relatively dissimilar to each other. Furthermore,
gaps are penalized quite strongly, resulting in compact alignments
that are not drastically influenced by large differences in sequence
lengths. Figure 3 shows an example of the similarity matrix created
from the local alignment performed for two scanpaths. The maxi-
mum value in the matrix is the similarity score [Smith et al. 1981].
In figure 3, the highest yellow color indicates the final similarity
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Figure 3: Scoring matrix of the local alignment. Backtracing
from the index with the highest value (yellow) will give you
the optimal local alignment of two scanpaths.

score and backtracing from this index till 0 will give the optimal
local alignment of both sequences.

The resulting similarity score for the two scanpaths is max(M).
Then, we normalize this score based on the length of the shorter
scanpath, thus:

similarity =
max(M)

min (|SA |, |SB |)
. (2)

We compared the performance of our DeepScanmethod to Smith-
Waterman local alignment of hand-labeled semantic AOIs (the gold
standard in adding semantic information to image patches, see
Supplementary Material Figure 1). These AOIs indicate specific
anatomical structures and regions across the dental radiographs
and provide the paramount in semantic information that can be
represented in a scanpath. For scoring the semantic scanpath com-
parisons, we used a simple, standard scoring system: 1 for matches,
−1 for mismatches, and −2 for gaps.

4 EVALUATION
4.1 Scanpath Data of Dentists
Students (n=57) were incoming dental students (sixth semester)
from their initial pre-med studies. They had no prior training in
dental radiograph interpretation, but basic conceptual knowledge
in general medical concepts. Experts (n=30, average 10.16 years
experience) were dentists working in the local university clinic
with all the proper qualifications and some had further licensing
for other particular specializations (e.g. Endontology, Prosthetics,
Orthodontology, etc.). Diagnostic performance results from both
groups indicated that the experts had 79.91% higher pathology
detection accuracy than students 4.

Both students and experts were asked to perform a visual search
task of panoramic dental radiographs (OPTs); then following image
inspection, indicate any areas indicative of pathologies. Students
4Performance metrics and expert results can further be found in [Castner et al. 2018b]
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had 90 seconds to inspect eachOPT, where experts had 45 seconds to
inspect each OPT. This shortened duration was due to the research
indicating that experts are much faster when visually inspecting
radiographs [Gegenfurtner et al. 2011; Turgeon and Lam 2016].
Students inspected two blocks of 10 OPTs in one experimental run
and experts – due to their hard-pressed schedules – inspected 15
OPTs.

All eye tracking data was collected with SMI RED250 remote
eye trackers sampling at 250Hz attached to laptops with FullHD
displays. A quality assessed calibration5 was performed for each
participant before and during data collection. Gaze data, i.e. fixa-
tions, were determined using a velocity based metric provided by
the eye tracker’s software. Further details of the data collection and
pre-processing can be found in [Castner et al. 2018a,b].

For compatibility, we chose to evaluate gaze data from the first
45 seconds of each student participant, in line with the experts’ total
viewing time. Additionally, our model is only evaluated on gaze
data for the 10 OPTs that both groups viewed. Gaze data was lost for
two expert participants due to software failure. Also, 5 participants
were excluded due to having high data loss (under 80% tracking
ratio6 and 3 or more low signal quality images) leaving 25 experts
and 54 students for the final analysis. The resulting total for all
participants for all images was 733 scanpaths.

4.2 Similarity Scoring
We performed local alignment of the scanpath vectors with patch
features for each participant for all images. In order to get the scan-
path behavior representative of each participant, we averaged a
participants’ similarity output for all images. Figure 4 shows the
similarity scores from DeepScan of each participants’ scanpath be-
havior over the images viewed in pairwise comparison to other
participants. The diagonal of the matrix indicates the highest simi-
larity value, which is a participants’ gaze behavior compared to his
or herself.

From the similarity matrix, a trend is apparent where experts
(labeled green in figure 4) show higher similarity scores among each
other, as visible by the more yellow values. Conversely, students’
gaze behavior shows less similarity among each other, especially
when compared to experts.

4.3 Hierarchical Clustering
We clustered the similarity scores of all participants using agglom-
erative hierarchical clustering [Corpet 1988; Johnson 1967; West
et al. 2006]. As the similarity matrix can easily be inverted to a
distance matrix, the unsupervised clustering approach was straight
forward; however one could introduce additional weighting factors
or more complex classification methods on top as well. This ap-
proach evaluates the distance between data points and links closer
in distance clusters until one cluster remains [Johnson 1967]. Par-
titioning the clusters then is determined by the linkage distance.
We used Ward’s [Johnson 1967] method for proximity definition,
which minimizes the sum of the squared distances of points from
the cluster centroid.

5less than one degree average deviation from a four point validation.
6A metric reported from SMI indicating proportion of valid gaze signals.
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Figure 4: Similarity matrix of subjects’ average scanpath be-
havior. Purple labels indicate students’ gaze behavior. Green
labels indicate experts’ gaze behavior. Values closer to yel-
low indicate higher similarity, Where the diagonal is a par-
ticipant compared against themselves. Values shown on the
diagonal are rescaled relative to values off-diagonal solely
for perceivability. On the y-axis is the resulting clustering
of the dendrogram, which recognized 2 clusters. On cluster
(purple) with mainly students and the other cluster (green)
with mainly experts.

Average Gaze Behavior of Each Subject. For the scores of each
student and expert summed over all images, the resulting dendro-
gram (2-dimensional tree view of the nested clusters) is shown on
the y-axis in figure 4.

The clustering seen in figure 4 recognizes two main clusters
evident in the gaze behavior with the majority of students in one
cluster (purple cluster, purple labels) and the majority of experts
(green cluster, green labels) in the other. Table 1 calculates the true
positive rate (TPR) when utilizing the clustering as a classification
for both students and experts as well as the overall accuracy. We
achieved 93.7% accuracy. We also found two clusters evident in
the traditional local alignment with manual AOIs; however more
students were misplaced in the expert cluster (as seen in table 1),
resulting in an overall accuracy of 85%.

Gaze Behavior on the Image Level. We then ran the hierarchical
clustering for participants’ gaze at the image level (over all 733
datasets and not the average similarities for each participant as
above). The dendrogram also recognized two clusters, therefore we
calculated the number of experts in one cluster and the number
of students in the other. The achieved accuracy for our approach
was 68.62%: Experts had 85.65% TPR and students had 61.18% TPR.
The achieved accuracy for the traditional, semantic approach was
64.39%: Experts had 51.76% TPR and students had 93.27% TPR.
This slight dip in performance could be attributed to pathology
differences in the stimuli. Previous literature has also found that
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Table 1: Performance of linkage clustering for our approach
(Feature) and Semantic AOIs as measured by the True Posi-
tive Rate (TPR). Two main clusters were found based upon
the gaze behavior for both approaches.

Student Expert Accuracy
Feature Semantic Feature Semantic Feature Semantic

Student 50 44 1 1
Expert 4 10 24 24
TPR 92.5 % 81.5 % 96.0 % 96.0 % 93.7 % 86.06 %

gaze behavior of expert and novice dentists can be highly stimulus
dependent, where dental radiographs considered easy to interpret
evoke similar gaze behavior in experts and novices [Grünheid et al.
2013; Turgeon and Lam 2016].

4.4 Cross-Image Classification
To further see whether we could predict classification performance
on an image level, we performed a leave one subject and one image
out cross-validation using the similarity scores from DeepScan. We
performed classification to 1) see whether we could predict a partic-
ipant’s expertise from their scanpath on a new image, not contained
in the set that we compare to. 2) to confirm that certain stimuli may
affect the similarities more than others. For each subject, we ran a
3-nearest neighbor classifier, trained on the remaining subjects and
images. Table 2 shows the performance for each image. Here, it is
clear that for some images, distinguishing expert and student scan-
paths becomes more difficult. For instance, image 1 shows a heavy
tendency to classify all participants’ scanpaths for that image as
experts, and image 3 shows a tendency to over-classify as students.
Nevertheless, five images allowed us to determine expertise of a
new subject on a new stimulus that were not contained in the data
we used for the classification. Especially, image 8 shows the highest
accuracy in classifying level of expertise, meaning this OPT and
its semantics can possibly trigger experts to inspect the image in a
distinctive way.

The cross-validation for the traditional local alignment scoring
for the scanpaths with manual AOIs, showed better performance
on the image level than DeepScan, and slightly better overall (77%
versus 73% respectively). Thereby, it is possible that we cannot yet
utilize the full potential of semantic encoding using the feature
approach. However, given that DeepScan is purely data driven, its
results are comparable and relegates the tedious process of manual
AOI labeling. Retraining the network on OPT data might help the
encoding to come closer to manually-defined semantic labels.

Additionally, we sorted the similarity scores of all scanpaths from
DeepScan to isolate those that expose especially high similarity
values to many other scanpaths. We hoped to extract archetype-
scanpaths this way. The histogram in figure 5 shows that two expert
scanpaths had the highest similarity scores to the most other scan-
paths. Interestingly enough, both these scanpaths and a number
of the other high similarity scanpaths are for image 1. Thus from
the local alignment similarity, certain scanpaths from image 1 offer
highly similar subsequences to other scanpaths regardless of image.
Image 1 was one of the stimuli that made a distinction between

Table 2: Performance of kNN classifier when one image is
left out and each participants’ expertise for that image is
predicted. Note that chance level is not 50%, therefore we
provide Cohen’s Kappa (κ) as an indicator of performance,
with bold text indicating fair performance.

Expert TPR Student TPR Accuracy
Feature Semantic Feature Semantic Feature Semantic

Chance: 32 % 68% Overall κ Overall κ

Image 1 100 % 75% 20.4 % 76.6 % 44.9 % 0.14 78.2 % 0.52
Image 2 59.1 % 68.2 % 83.3 % 85.4 % 75.7 % 0.43 80% 0.54
Image 3 28.6 % 66.7 % 93.5 % 80.4 % 73.1 % 0.26 76.1 % 0.46
Image 4 52.4 % 57.1 % 89.8 % 83.7 % 78.6 % 0.45 75.7 % 0.41
Image 5 76.2 % 53.4 % 68.6 % 88.2 % 70.8 % 0.39 77.8 % 0.43
Image 6 66.7 % 75% 67.9 % 81.1 % 65.5 % 0.31 79.2 % 0.54
Image 7 60.9 % 30.4 % 86.5 % 90.4 % 78.7 % 0.49 72 % 0.24
Image 8 73.9 % 91.3 % 88.2 % 68.6 % 83.8 % 0.62 75.7 % 0.51
Image 9 45.8 % 58.3 % 92.6 % 96.3 % 78.2 % 0.43 84.6 % 0.60
Image 10 30 % 80% 96.2 % 65.4 % 77.8 % 0.32 69.4 % 0.37
Overall 60.1 % 65.5 % 78.2 % 82% 72.7 % 0.37 76.9 % 0.46
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Figure 5: The top scanpaths who have the highest frequen-
cies of similarities to other scanpaths; With experts indi-
cated in green and students indicated in red. The majority
of theses scanpaths are for image 1, as indicated by the blue
text.

expertise levels hard. It might therefore represent a standard scan-
path for checking OPTs that abstracts over special attributes of
individual stimuli.

The two experts scanpaths (illustrated by their image patches)
with the most highest similarities to each other and many other
subjects’ scanpaths are shown in figure 2 in the Supplementary
Material.

5 DISCUSSION
We were able to successfully extract similarities in the scanpath
behaviors between experts and the differences towards students
gaze behavior while interpreting panoramic dental radiographs.
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Scanpath A

Scanpath B

Time Viewing

...
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Figure 6: Two relatively dissimilar scanpaths from students.
The local alignment finds the optimal matching subse-
quence starting in scanpath A at the twentieth fixation (far
left top) and in scanpath B at the fiftieth fixation (far left
bottom).

Our developed scanpath comparison approach uses temporal scan-
path information to extract image features at the fixation level. The
resulting similarity comparison of scanpaths therefore incorporates
this image information into the traditional approach of sequence
alignment to detect patterns between the behaviors.

From traditional local alignment techniques using image features,
we found that experts showed highly similar behavior to each other
and therefore, were more likely to be clustered together. More in-
teresting, students’ similarity scores indicated that their scanpaths
were not highly similar to those of experts, but also there was no
distinct homogeneity among themselves (see figure 6). One possible
reason for their low similarity to each other could be that they are in-
coming students with some conceptual background; however, they
had no training on radiograph interpretation. Previous research
has found that students evoke more systematic search strategies
after training, resulting in more similar gaze behaviors [Kok et al.
2016; Van der Gijp et al. 2017]. Additionally, the heterogeneity of
background and training can affect scanpath similarity [Davies
et al. 2016]. Possibly students have varying levels of conceptual
knowledge or familiarity with radiographs before entering their
first year of dental studies.

Our algorithm was able to accurately classify unseen scanpaths
given scanpaths from other participants and other images. Although
we found that, depending on the image, it could be easier or harder
to differentiate the levels of expertise from the scanpath similari-
ties. This finding is, however, in alignment with previous studies
specifically on dentists and dental radiograph examination. For
instance, [Turgeon and Lam 2016] found that radiographs defined
as easy to interpret offered no differences in the gaze behavior of
experts and novices. Castner et al. [Castner et al. 2018b] also found
that even among experts some images evoked highly differing gaze
behavior to achieve accurate anomaly detections.

With the system at hand, we could classify expertise of dentist
students in an adaptive feedback setting from viewing just a single

stimulus (with decent accuracy), even if the stimulus itself is an
arbitrary OPT that is unknown to the classifier. This could be used
to guide students through the learning process and to adapt the
difficulty of stimulus material to their current knowledge level.
When viewing multiple stimuli (which students do in the current
mass practice approach), classification accuracy can be increased.

Futhermore, we observed that some stimuli allowed for a clas-
sification of expertise, while others did not. We could utilize this
information as a hint on which stimuli are likely to induce a train-
ing effect and to differentiate them from stimuli that are too easy
(for the current student).

Moreover, we designed DeepScan to handle image variability.
One image feature descriptor of a patch in one image can match to
similar patches in other images (see figure 1); This way, scanpaths
can be more easily compared cross-stimuli, but this process also
replaces a manual AOI-annotation. By the assumption that similar
semantic meaning in a visual task corresponds to similar looking
features in the stimulus, we have introduced a notion of stimulus
semantics into the automated scanpath interpretation. A similar
workflow could be used to compare data where the annotation of
dynamic AOIs is usually unfeasible, e.g., recordings of mobile eye-
tracking devices to each other. Furthermore, we do not restrict the
algorithm to individual annotated AOIs, but represent each fixation
by its feature descriptor, no matter whether a data analyst would
deem it relevant for the analysis at hand or not.

One limitation for the current work could be the methodological
confound of the viewing time differences in the expert and stu-
dent paradigms. Since a consistently longer viewing time for the
students would heavily affect the similarity scoring regardless of
normalization, we took the first 45 seconds of the students, so that
our similarity scores would be less biased by their longer scanpaths.

6 CONCLUSION
Our proposed model for scanpath classification, DeepScan, is ca-
pable of extracting gaze behavior indicative of expertise in dental
radiograph inspection. More important, this approach employs deep
learning to extract image features. Consequently, human expert
gaze behavior coupled with relevant image semantic extraction
offers an accurate approach to automated scanpath classification.
However, the motivation for this model does not finish here. Rather,
it was developed for applicability not only in the medical expertise
domain, but also for scenarios with dynamic, semantically varying
tasks (i.e. Training in VR, real world scenarios with mobile eye
tracking).

Future directions of the proposed approach optimization for
online classification of scanpaths. We chose a local alignment eval-
uation as a traditional approach to scanpath comparison, since it
provides for a standard and robust evaluation of the scanpath fea-
ture matrix created. DeepScan has the potential for online use and
further evaluation are therefore necessary for working towards
integrating this model into adaptive feedback scenarios.
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Supplemental Material
Supplementary Figures

Figure 1: Manually de�ned Semantic AOIs for one OPT. AOI names are the same across all ten OPTs
and correspond to a respective structure or region. Fixations in AOIs were then encoded to
strings and used as input for the traditional Smith-Waterman sequence alignment.

Figure 2: Two experts scanpath on image 1 (one scanpath in green, the other scanpath in blue) with
highly similar scanpaths to themselves as well as many other subjects.
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Abstract

One of the appealing areas of expertise research is devoted to measuring the effectiveness of training programs for novices. With
recent progress in eye tracking, gaze-based interaction systems recognize a user’s attention and can direct it accordingly. Moreover,
dynamic visualization of an expert gaze model facilitates novice training by guiding the gaze to relevant areas. In addition, the sys-
tem should be aware of realtime attention to remove an overlay that could occlude relevant information. We use an implementation
of subtle gaze direction (SGD) and the simplified scanpath of a dentist to train naive participants in finding anomalies in dental
radiographs. We were able to effectively direct user gaze to relevant image features without occluding the area when attention was
recognized. Additionally, participants reported that the intervention was helpful for image inspection. The results of the model
intervention show minimal improvements in anomaly detection, which is expected of naive subjects. We advocate that the system
has the potential to be highly effective for advanced students and trainees with a certain foundation of conceptual knowledge.
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1. Introduction

Pervasive eye tracking provides a rich source of input to systems regarding a user’s attention [6, 43]. As the
interpretation of attention is often open to debate, we restrict the current work’s definition to the visual attention
aspect, as measured by the gaze locations over time for a given stimuli. Thus, gaze aware systems can detect user
attention to certain areas at a given time and give customized support for the current task in a way that exploits
natural human behavior, e.g. scanning a scene [29, 45]. One area that has shown promising applicability of these
systems is intelligent tutoring systems. They cater to the user by offering adaptability and personalized feedback.
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Two Experts Attention Expert's Simplified Scanpath

1

2

Fig. 1: Gaze guiding through experts’ attention. AOIs are calculated from the heatmap. Then, the simplified transitional behavior becomes the order
of presentation.

Using students’ realtime gaze behavior to register attentional information has shown to successfully serve as input to
adapt training systems in online learning portals [44, 40, 3, 7]. More important, they can augment traditional teaching
approaches for effective visual inspection, by better breaking down complex imagery based on the realtime attentional
information [41, 31]. One field that can highly benefit from gaze-aware tutoring is medical image inspection.

Medical experts are accountable for a high degree of sensitivity and specificity in diagnoses, since proper patient
care is at stake. Visual search strategies can exemplify their perceptual expertise, where successful verification can
rely on the slightest changes in the image features [39, 26, 20, 25, 47, 21]. In diagnostic radiology, experts initially
perceive abnormalities faster and can also better discriminate what is irrelevant and what can indicate a pathology
compared to novices [26, 22, 48].

Training perceptual expertise in radiology is a key component in novice training. For radiograph images, di-
rected training in high volume has shown increased perceptual sensitivity in low-contrast target recognition [46]
and semantic target recognition [11]. However, this approach becomes comparable to traditional massed practice ap-
proaches that require time and numerous images. Research has drawn attention to using gaze models for students
or trainees [31, 30, 17, 16] to improve their perception to relevant features and thus streamline the learning process.
Though proficient performance can be obtained, it has also been stressed that conceptual knowledge accelerates proper
diagnostic interpretation [19, 12, 30].

Our work combines domains that have been previously running in parallel: Expert gaze modelling for learning
and user-attention awareness. We designed a framework for gaze guiding based on expert viewing behavior on dental
radiographs while recognizing a user’s real-time gaze. Our interests are two-fold, 1) whether we can effectively guide a
user’s gaze to relevant regions of an image without occluding any information and 2) whether expert gaze guiding can
improve perceptibility of anomaly features for non-experts. We present an exploratory evaluation of the intervention
design with naive participants and assess its efficacy by its ability to guide the gaze unobtrusively and from usability
feedback. Additionally, we look at detected anomaly features; however, we are aware that diagnostic performance
would be more appropriately evaluated with students and advanced trainees, who have a more appropriate skill set for
pathology interpretation.

2. Related Work

Gaze-based systems can offer an array of methods to visualize either a user’s gaze in realtime or a gaze guiding
model. Gaze contingency is visualizing a user’s gaze, e.g. spotlighting, unmasking or unblurring, etc. [15, 38, 37].
For example, [28] used a white ring to indicate expert dentists’ online gaze while viewing periapical (One tooth/

region of teeth) radiographs. Recognizing areas that were previously attended to and occluding them was shown
to reduce workload during target detection [41]. Conversely, [14] found no effect on target detection accuracy or
response time in a search task when users could see their own fixated or “yet to be fixated” regions overlayed in a
colored translucent grid form. Moreover, they conclude that their protocol assumes a target will be detected if it is
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AOI Queue

Current AOI with respect to Gaze

Dequeue, 
Take next AOI 

Fig. 2: Illustration of feedback animation. When the gaze attention (red cross-hair) is not directed towards the AOI, it pops up as a semi-translucent
yellow circle (left image). When the gaze attention goes towards or is in the AOI, it presents the feedback as a translucent yellow ring (right image).

fixated on; it does not account for errors in target interpretation [14]. Regarding interpretation, tasks involving domain
expertise can lead to recognition or decision errors (e.g. false negatives), where novices were more prone to these
errors [34, 5, 1]. Concerning novice training, [42] found that blurring novice basketball players’ periphery improved
their decision making performance and that performance was even stable longitudinally. Specifically in medical image
inspection, [35] found that gaze contingent windows on a chest radiograph acted as a guide for foveal vision towards
inconspicuous nodules in the periphery, improving time to detection in experts. To our knowledge, gaze contingent
feedback in novice medical image inspection has yet to be investigated.

Illustrating an expert’s gaze as opaque yellow dots guided students to relevant features of the task [31]. Similarly,
blurring areas where experts did not attend guides students’ gaze without occluding relevant features [30]. Showing
an experts’ gaze dynamically as red dots coupled with think-aloud protocols was used for training both novice and
experts in radiograph interpretation [19]. However, these aforementioned systems passively display an expert model
and lack the user awareness and interaction.

Gaze-guiding systems that adapt to a user’s gaze online have also been shown to be effective [38, 18, 41]. However,
illustrating the user’s gaze or a region of interest in a salient fashion can lead to feature occlusion that could hinder
decision making in certain detection tasks. In order to not occlude potentially relevant regions, [2] proposed subtle
gaze direction (SGD). It guides gaze during visual search by manipulating either the luminance or color and present
it in the subject’s periphery. When a saccade is detected towards the area of interest, the masking is removed [2].
Similarly, SGD with flickering in the periphery has been successful in gaze-guiding [49].

We employ a version of the SGD using areas of expert attention when examining panoramic dental radiographs
(OPTs). We chose expert attentional areas because efficient anomaly detection is apparent in their search strategies.
Among experts, scanpath variability can be high as they tend to employ their own “short cuts” [33, 32, 36] However, it
has been found that relativity similar scanpaths can indicate correct medical image interpretation [13]. Therefore, our
model is an expert’s scanpath with respect to areas of attention of theirself and another highly similar expert scanpath.
We present our SGD implementation with this expert model to non-experts.

3. Methods

Participants. We recruited 27 (20 male,Mage = 28.4) participants. Their backgrounds were mainly computer science
(13). However, one was a medical assistant and another was a paleo-anthropologist. Both had more experience with
general human anatomy and some radiology, though not specifically dentistry. 11 participants wore glasses during the
experiment.

Experimental Paradigm. Prior to the experiment, all participants were debriefed regarding eye-tracking and the gen-
eral protocol and signed a consent form. At the end, they were asked to fill out a brief questionnaire regarding the task
difficulty, the gaze feedback, usability etc.

A five-point calibration with four point validation was performed for each subject at the beginning and in the
middle of the experiment after a short pause. We followed the same experimental paradigm that can be found in [8].
Participants saw ten panoramic dental radiographs (OPTs). Each OPT was presented twice subsequently: First for
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90 seconds, where they were instructed to inspect the image and then again where they could mark any areas they
perceived as an anomaly. For each participant, we randomly determined which five OPTs would show the gaze-
guiding; the other OPTs provided no feedback. This way we could compare within-subjects, whether the feedback
had an effect. The second presentation of the OPTs had unlimited time for participants to mark detected anomalies at
their own pace. A chin rest was used to assure stable gaze signal.

Expert Ground Truths. The OPTs were taken from Castner et al. [9, 8] and had pre-determined ground-truth anomaly
information from two dentists involved in the project. The ground truth data was used to calculate the anomaly de-
tection performance of the current participants. An anomaly was labeled as detected (true positive) if the participant
marked the respective area of a ground truth anomaly. False negatives and false positives were if the participant did
not mark a specific ground truth anomaly area or marked an area where no anomaly was present, respectively (see
Castner et al. [9] for further details on the detection performance protocol).

To create the areas of interest (AOIs), we chose gaze data from two experts from a previous data collection with
expert OPT inspection. Experts from this data collection had an average of 10 years of experience. Through similarity
clustering, two experts were found to have scanpaths highly similar to all other experts’ scanpath (see [10] for further
details); their data was chosen to develop the expert model. From their heatmap, areas with higher concentration of
gaze are segmented as illustrated in the right image in figure 1. We chose the scanpath of the more accurate (higher
detected anomalies) of the two experts to provide transitional behavior. We preferred a simplified version of the
transition, denoting the first glance into an AOI and not revisits, since it was determined that revisits would be too
hard to follow. An example of a simplified scanpath is also found in figure 1: The first blue AOI is looked at (1)
then transitions to four other AOIs were made before going back to the first AOI, we omit the revisit and set the next
transition to the yellow AOI (2). Without revisits, scanpaths ranged from 9 to 23 transitions, and with revisits, they
ranged from 88 to 175 transitions.

Software. We based the experiment software off the experiment designer and gaze-contingent feedback developed
in [38]. This software already has the usability for presenting image stimuli for either a set time or key-press interrupt.
We added an on-screen drawing tool, so we could gather the anomaly detection recall and precision of the non-experts.
We also added the ability to upload customized feedbacks with AOI positions as csv-files.

We incorporated the AOIs and the ability to recognize attention towards them; Our method is based off the subtle
gaze direction (SGD) method from [2]. We added a short delay of 5 seconds, before the first AOI pops up, so
participants could scan the image shortly.

AOIs for a certain feedback are placed into a queue. Upon an animation timer timeout, the current AOI is dequed
and painted over the stimulus. For this work, we set the timer to timeout every 3.8 seconds so participants would
not feel rushed, as they were non-experts. The AOI is initially illustrated as yellow (RGB : 252, 252, 103) with a
translucent radial gradient (left image in figure 2). We chose this color as we felt it would be salient against our
grayscale stimuli.

In order to avoid occlusion of important image features, we repaint the AOI area with a translucent yellow ring
(right image in figure 2), when our SGD implementation detects the gaze angle as going towards the AOI. Where the
angle, α, is calculated as follows:

α = cos−1


−→υ · −→t
|−→υ | · |−→t |

 , (1)

where −→υ indicates the vector from the previous gaze point to the current gaze point and −→t indicates the vector from
the previous gaze point to the target AOI. We calculate α five times using equation 1: with one −→t to center coordinates
of the AOI and then −→t for each of the corner coordinates of its bounding box. We calculate the previous gaze as the
average of the last two gaze coordinates stored in a buffer. We take the minimum of the five angles and subtract it from
360° if it is larger than 180°.
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Then, if α is between 0 and 10°, the AOI updates from the circle to the ring. This threshold was used in [2], and
was determined stable when testing our implementation. For gaze input, we used the SMI RED250 remote eye tracker
running at 60Hz.

4. Results
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Fig. 3: Performance as measured by the F1 Score (a) overall images (b) comparing the intervention of expert gaze feedback against no feedback,
and (c) the gaze behavior with respect to feedback or no feedback. Means (circles) and standard errors (tails) are plotted for all figures.

Performance and Gaze. We calculated the sensitivity and precision of the participants over all images, then calculated
the harmonic mean (F1 score) between the metrics. Sensitivity is the true positive rate (TPR), precision is the positive
predictive value (PPV). The F1 score is 2 · (PPV · T PR/PPV + T PR). One participant’s performance was omitted
upon learning that they did not understand the instructions given at the beginning. As was expected with non experts,
performance in OPT anomaly detection was relatively low: The average F1 score overall was M = 28.42%,SD =

8.45. The distribution is shown in figure 3a.
To see if there were any effects of the expert gaze feedback intervention, we ran a repeated measures t-test on both

the performance and the gaze behavior for “feedback” versus “no feedback” conditions. No major effect was found for
the intervention on performance (t(26) = −2.021, p = 0.054), with the performance with the feedback was slightly
better (M = 30.80%,SD = 8.23) than without the feedback (M = 26.85%,SD = 10.97.). Figure 3b shows the
performance with respect to the intervention.

However, the intervention had a stronger effect on the gaze behavior. Average fixation durations were higher for
the feedback condition (M = 443.03,SD = 78.76) compared to the no feedback condition (M = 400.96ms,SD =

60.29, t(26) = −4.704, p < 0.0001). Additionally, the average fixation count for the feedback condition was lower
(M = 173.0,SD = 24.15) than the no feedback condition (M = 186.64,SD = 21.41, t(26) = 4.502, p = 0.00012).

Attention to AOIs. To assess whether the intervention successfully guided the gaze behavior, we looked at subjects’
gaze behavior in relation to the AOIs as shown in figure 4. We ran repeated measures t-test for AOI glances and
transition similarity.

We looked at the effect of the intervention on the AOI glances. We measure AOI glances as the proportion
of a glance on an AOI in relation to the total AOIs from the expert model. We found that with the feedback,
subjects had significantly higher proportion of glances (M = 0.8359,SD = 0.0935) than without the feedback
(M = 0.7060,SD = 0.0863, t(26) = −8.165, p < 0.0001).

We looked at the effect of the intervention on the similarity of subject’s AOI transitions to the expert’s transition.
Similarity was calculated with the levenshtein distance [24] for subjects’ scanpaths compared to the expert’s scanpath
and normalized to the length of the longest scanpath. We found that with the feedback, subjects had significantly
more similarity to the expert (M = 0.7203,SD = 0.072) than without the feedback (M = 0.7937,SD = 0.0416,
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Fig. 4: Performance as measured by the F1 Score for each image with respect to intervention.

t(26) = 4.791, p < 0.0001). Figure 5 shows the transitional information for one image of subjects with (middle)
and without (right) the intervention compared to the expert’s gaze transitions relative to the AOIs (Left). Here, it is
evident that the similarity is of the subjects who received the gaze feedback is closer to the expert’s gaze behavior
than the subjects who received no feedback: Note the transitions to (lines originating) and from (lines landing) AOI 5
(burgundy).

Expert Gaze Transitions Naive Intervention
 Gaze Transitions

Naive Control
 Gaze Transitions

AOI 5 AOI 5 AOI 5

AOI 4

AOI 4 AOI 4

A
O

I 5

A
O

I 4

AOI 1

AO
I 8

A
O

I 
7

A
O

I 
8

AOI 1

A
O

I 
7

A
O

I 
7

A
O

I 4

A
O

I 4

A
O

I 
6

AOI 1

A
O

I 
6

A
O

I 
6

A
O

I 
6

AOI 2

AOI 2

A
O

I 3

AOI 3

AO
I 5

A
O

I 5

AOI 8

Fig. 5: Example of AOI transitions for one image. Where the left most diagram is the expert’s transitional information and the middle is the
transitional information of subjects who received the gaze intervention and the right most is the transitional information of subjects who received
no gaze intervention .

User response. Regarding usability, we asked subjects to fill out a short questionnaire about the task and the gaze
feedback. Average responses for the questions are plotted in figure 6. Overall, the subjects found the task difficult
and were not confident in their performance. This could be expected as the nature of anomalies in these images are
likely to be very subtle to the untrained eye. Moreover, they were overall positive regarding the intervention, finding
it beneficial and depending on it to complete the task. Some participants made informal comments to the researchers
that, after a few images with interventions, they started to recognize features (e.g. dark shadows in the gums), which
they felt could be indicative of something abnormal (peridontitis). They did however find the task a bit too long and
slightly rushed. These responses will be helpful for future testing and system development.
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Fig. 6: Average responses for questionnaire regarding the task and the gaze intervention. The task was reported as difficult for the non-experts. They
did report that the feedback was helpful and they used it.

5. Discussion

Overall, there were significant differences in the gaze behavior. When presented with the expert gaze model, partic-
ipants exhibited fewer fixations, but longer fixation durations. This behavior could be indicative of more information
processing and associated with novices [20, 32, 33, 27]. Additionally, the gaze model elicited a higher proportion of
AOI glances. Therefore, there was more attention to relevant-areas of the image. However, subjects did not detect
anomalies in dental radiographs with high accuracy. The expert gaze model intervention did not significantly improve
performance compared to no intervention at all. One reason for this finding could be the low sample size. Additionally,
this low sample size could explain the high variance in the gaze behavior for both the intervention and no intervention
condition. Further research with an appropriate sample size to observe a significant difference is necessary.

Moreover, participants reported feeling more confident with the gaze intervention and relied on it to complete the
task. They successfully followed the expert gaze model and were more similar to the expert’s AOI transitional behav-
ior. Although, they lacked the conceptual knowledge that facilitates the proper interpretation of the relevant features.
Previous research has also indicated that search pattern training draws attention to relevant areas, but did not affect
performance [33, 19, 23]. Waite et al. [48] highlights the reciprocity of perception and cognition in diagnostic per-
formance: For instance, initial feature localization, then conceptual knowledge facilities the decision that this feature
needs further inspection (e.g. difference in contrast, and area prone to anomalies, etc.) and whether it is recognized as
a specific pathology or could be ruled out.

It should be noted that dental radiographs, as with all medical images, are highly complex in nature and require
some form of conceptual knowledge to interpret reliably. Presenting only ten OPTs may not have been enough for a
significant training effect. Considering the low number of OPTs, the naive participants seemed to recognize features
the intervention highlights in later images as they reported. To get improved performance in naive observers, [11] used
around 800 images to improve hip fracture detection. Further research is needed that addresses the optimal amount of
images needed to improve interpretation, without inducing fatigue while still providing ample time to interact with the
gaze model. In our study, we were limited to investigating short term effects of training naive participants. A longitu-
dinal study regarding the gaze-aware feedback system on naive subjects’ or novices’ learning overtime would be an
interesting aspect for further research. Furthermore, the notion of implicit feature learning is also interesting for future
work. Beesley and colleagues [4] found gaze contingency aided in implicit rule learning. Staggering training sets of
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certain types of anomalies and expert gaze behavior related to them may improve detecting the features indicative of
these anomalies.

Moreover, we show a potentially effective learning intervention for either novices or more advanced dentists. Stu-
dents undergo intense studying and exposure to get to the level of professional expertise that makes them successful
later in their careers. More effective learning interventions can smooth the transition of students to residency and
professional environments by minimizing the knowledge gap between each stage. With better preparation, less pro-
fessional resources need to be expended on supervising incoming residents and early professionals. Even then, expert
is never a final state, but should always be open for further learning and improving. Generally, it has been found that
experts and more advanced trainees benefit highly from gaze interventions [19, 21]. Our implementation of the SGD
with expert AOIs could also potentially be catered to advanced learners, in hopes to further fine-tune established skills.

6. Conclusion

We employ subtle gaze direction to present expert attention while examining panoramic dental radiographs. Our
method does not occlude relevant areas in the foveal vison, as it recognizes when attention is directed towards the
area. We could successfully guide the gaze to relevant image features and promoted further inspection. Our findings
with naive participants showed that the gaze feedback could not develop successful dental radiograph diagnosis, but
elicited gaze transitions similar to the expert model. They also felt more confident and that the framework helped them
properly inspect radiographs. This aspect suggests further research to promote SGD as a suitable way to illustrate
expert gaze behavior in learning interventions with students or advanced trainees.
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