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Abstract Pervasive computing environments deliver a multitude of possibil-
ities for human-computer interactions. Modern technologies, such as gesture
control or speech recognition, allow different devices to be controlled without
additional hardware. A drawback of these concepts is that gestures and com-
mands need to be learned. We propose a system that is able to learn actions
by observation of the user. To accomplish this, we use a camera and deep
learning algorithms in a self-supervised fashion. The user can either train the
system directly by showing gestures examples and perform an action, or let
the system learn by itself. To evaluate the system, five experiments are carried
out. In the first experiment initial detectors are trained and used to evaluate
our training procedure. The following three experiments are used to evaluate
the adaption of our system and the applicability to new environments. In the
last experiment the online adaption is evaluated as well as adaption times and
intervals are shown.

Keywords Gestures, Supervised Learning, Neuronal Network Adaption,
Neuronal Network, Online Adaption
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1 Introduction

Computers in our daily environments are versatile. There exist notebooks,
smartphones, desktop computers, cars, intelligent lighting, and multi-room
entertainment systems to name only a few. Each device offers a variety of
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Fig. 1: Learning from observations.

interaction techniques: Some are keyboard, touch, voice, mouse, gestures, or
gaze. Each is consistent in itself, yet different with regard to the usability.
Meaning often, the time to acquaint oneself to all the features and proper
usability becomes laborious, leading to errors and frustration.

An example of onerous device acquaintance is gesture-based control; when
the user learns the pre-programmed gestures. There are some disadvantages in
this context however because the gestures may be unusual for humans, making
the use of the interaction technique uncomfortable. Another disadvantage of
the pre-programmed gesture-based control is that it is impossible to use if any
fingers or arms are injured. Additionally, it also affects people who suffer from
physical limitations. In the area of voice control, all dialects can be problem-
atic (Simpson and Levine, 2002). With this interaction technique, it is also
necessary to learn the words to control the computer as well as the user has
to get used to the commands to feel comfortable.

In contrast, the human being can learn by observing another person with-
out any explicit interaction, which is known as observational learning, a con-
cept of the social learning theory (Bandura et al., 1961). Figure 1 shows an
example of this theory. One person observes another as she lights a pile of
wood with flint pieces. Then, she also builds a pile of wood and ignites it with
sparks by striking the flint together.

The human being is capable of this because the human brain is a marvel
and capable of the extraordinary. However, its capacity and functionality are
limited. We absorb information through the sensory organs, which send signals
to be processed in the sensory cortex and further relayed to many other brain
structures. How long we store information depends not only on its importance,
but also how important we perceived it (Bloom, 1976; Rao and Gagie, 2006).
A rough categorization is auditory, haptic, and perceptual learning (Ausubel
et al., 1968). In this paper, we focus on perceptual learning from the computer’s
point of view. Meaning, the computer learns to execute an action by only
receiving visual input and the status of the action.

Therefore, we conducted two experiments where the computer learns by
observing the user. In the first experiment, the user trained the computer
explicitly to execute an action. Therefore, the user made gestures in front
of the camera and executed an action on the computer (opening an applica-
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tion, pressing a key etc.). In the following three experiments the adaption of
our system is evaluated based on additional training examples as well as the
adaptability to new environments. The last experiment evaluates the online
usage.

This visual learning is possible due to breakthroughs in the area of machine
learning (LeCun et al., 1998). Computers already outperform humans in many
visual tasks (LeCun et al., 2015; Szegedy et al., 2016), and with the advent of
fine-tuning, they are able to learn new things quickly (Yosinski et al., 2014).

2 Related Work

We categorize the related work in two parts. The first part is hand gesture
control, since it a type of interaction in which of the computer uses a video
or motion source. Here, we summarize the work that has already be done in
this area. The second part is a summary of machine learning approaches for
learning from observations that are also used in our system and mainly comes
from the field of robotics.

2.1 Hand gesture control

Research in the field of hand gesture based human-computer interaction Francke
et al. (2007); Dardas and Georganas (2011) uses different sensory systems to
develop a fast, reliable, and general gesture classification. Previously, an ac-
celerometer for the measurement of the movement was used as the sensory
system (Arce and Valdez, 2010). Afterward, a neuronal network was trained
to classify the gesture of the subject (Arce and Valdez, 2010). This work was
enhanced using Micro-Electro-Mechanical Systems (MEMS) combined with
a wearable glove (Pandit et al., 2009) and also using gyroscopes (Dixit and
Shingi, 2012). Since those systems are rather expensive and complex, gloves
with imprinted patterns for recognition were developed in (Wang and Popović,
2009). The gesture classification was done based on a video stream using com-
puter vision algorithms. This approach was improved using hand detection,
feature extraction, and vector quantization (Lamberti and Camastra, 2011).
Earlier work in the field of image-based gesture recognition was with the use
of Hidden-Markov-Models (Yang et al., 1997) in combination with color gloves
or Haar-like features (Chen et al., 2007). Besides technical obstacles like re-
liability, speed, and costs, hand gesture interaction must also address the in-
tuitiveness of and the comfort for the user (Corera and Krishnarajah, 2011).
The first problem of gesture control in terms of intuitiveness and comfort is
the lack of a standardized vocabulary (Corera and Krishnarajah, 2011). In ad-
dition, most users would prefer to define their own gestures to perform certain
tasks (Li and Jarvis, 2009). Both are necessary to cope with pervasive com-
puting environments and interaction comfort for the user (Li and Jarvis, 2009;
Nielsen et al., 2003; Alastalo and Kaajakari, 2005). Modern approaches consist
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of hybrid interaction technologies, such as gestures and gaze (Li et al., 2017)
or voice (Basanta et al., 2017). The goal is to improve the overall comfort of
the user by combining the advantages of different interaction approaches.

The system presented in this paper focuses on user comfort. It cannot
accomplish the task of learning complex gestures or behavior in a way to
reproduce them, rather it can learn to interpret visual input and to perform
an action. The beauty comes from the natural way our system learns, which is
called perceptual learning for humans. Users are visually observed and paired
to their actions. Here, the actions are on or off decisions, thus simple processes
it is able to reproduce.

2.2 Learning from observations

Research regarding observational learning also address imitation learning, which
also apply to computer learning (Hussein et al., 2017; Liu et al., 2018). In im-
itation learning, information about the behavior of the teacher is extracted.
This information is used to learn a mapping between the demonstrated behav-
ior and the actions to be performed by the computer (Hussein et al., 2017).
It is mainly used in the steering of robots (Schaal, 1999; Ijspeert et al., 2002)
and can be split into two categories. The first category is behavioral cloning.
Here the behavior is provided as consecutive actions (Pomerleau, 1991; Ross
et al., 2011) and the training is done in a supervised fashion. The second cat-
egory is inverse reinforcement learning, where the training is done based on
a reward function (Abbeel and Ng, 2004). Both categories of imitation learn-
ing are usually demonstrated and executed in the same context. But there is
also work that has studied the imitation of a demonstration with a different
context (Dragan and Srinivasa, 2012; Gidaris and Komodakis, 2018).

In our scenario, the data consists of the video stream and the action state
(on or off). Therefore, our approach can be assigned to the former category.
For training, we use fine tuning (Yosinski et al., 2014; Hoo-Chang et al., 2016)
of a deep neuronal network for image classification (Krizhevsky et al., 2012),
which was trained on ImagNet (Deng et al., 2009a).

3 Contribution of this work

The contribution of this work is a learning approach for the creation and
adaptation of machine learning based human computer interaction systems.
The system was evaluated with ten users in five experiments and based on the
experiences gained in these experiments, existing limitations are discussed.
Furthermore, possible fields of application for human computer interaction for
existing software will be discussed and new possibilities are identified. The
following is a list of the contribution of this work.

1 Learning approach for creating human computer interaction systems by the
user.
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(a) Thumbs-up (b) Fist (c) Hand (d) Headphone (e) Monitor

Fig. 2: Five different user movements of the same subject using our web cam-
era.

Fig. 3: Performing an action based on the thumbs-up gesture.

2 Learning approach for the adaptation of human computer interaction sys-
tems by the user.

3 Extensive evaluation of the system in five experiments.
4 Identification of possible fields of application and the perspective of the

approach for existing software.
5 Identification of limitations and possibilities for further research.

4 Method

The used recording setup consists of a common RGB web camera with 30
frames per second (fps) in front of a desktop computer with a 19-inch monitor.
For the camera, we set the capture resolution to 1280 × 960 and downscaled
it to 227 × 227, which is the input size of the CNN.

Figure 2 shows five recorded scenarios. The first three show the user ges-
tures thumbs-up, fist, and the hand with spread fingers (high -five gesture).
For simple user behavior (can also be seen as a gesture based on a time se-
ries of frames), we used the actions of putting on headphones and turning the
monitor on/off (as seen by the arm reaching towards the power button). In the
following we will name these two time dependent gestures simple behaviour.
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Fig. 4: Starting a browser while performing a gesture starts the data collection
and training.

The first part of our system is the classification of simple behavior and
gestures, which are shown in Figure 3. When the user wants to start an ap-
plication that is assigned to a task or an action (On/Off box). He performs
a gesture, the thumbs-up in Figure 3, which is captured by the camera. Each
frame is stored in the image buffer. On each new image, the Convolutional
Neuronal Network (CNN) classifies, based on a time window, if an action has
to be performed. The action selected for the gesture thumbs-up in Figure 3 is
turning the radio on.

The online training starts when a user toggles an observed action. In Fig-
ure 4, the user starts his browser and performs the thumbs-up gesture. The
observer thread recognizes this state change and initiates the data collection
and training. First, the current frame and its predecessors are combined into
one input package (based on the time window size) together with the action
number. This package is stored in the database as a valid example for this
action. Forty-five additional valid examples are also created by shifting the
current buffer index one frame backwards (1,5 Seconds). This means the first
additional valid example goes one frame backwards in time and the second
additional valid example two frames etc. The remaining images in the image
buffer are also grouped based on the window size and added to the database as
negative examples (do nothing class or class zero). For the time window size,
we run the CNN in parallel (batch mode) and multiplied the probabilities
(output of the last fully connected layer).

The online training starts after the collection of the new data samples. For
data augmentation, we used 0–30% percent of noise, flipping, cropping and
shifting the image up to 20% of the image width and height. Both values are
determined randomly for each selected image in each iteration. Therefore, the
CNN never sees the same image twice. For the batch generation, we computed
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Fig. 5: Confusion matrix of the classification results with the proposed batch
balancing for an initial training with four examples per class. The classes are
the three gestures (fist (1), hand (2), and thumbs-up (3)) and the two move-
ment sequences (turning the monitor on/off (4) and putting on the headphones
(5)) in addition to the do nothing class 0.

the batch size based on the number of action classes (not the zero class). Each
action class has always two valid examples per batch: So as to improve the
generalization in comparison to just only one valid example per class. The same
amount is added from the zero class (2× number of action classes). Therefore,
for five action classes, we have a batch size of 20: Ten of the action classes
and ten from the do nothing or zero class. In the following we refer to this
structure of the batch as batch balancing. This batch creation was used to
reduce misclassifications which are assigned to the wrong action class. This
means that it is favored that our system does not perform an action instead of
the wrong action. The fine tuning was performed with a learning rate of 1e−5.
In addition, we set the learning rate of the convolution layers to 0. We used the
ResNet34 (He et al., 2016) architecture pre-trained on ImagNet (Deng et al.,
2009a) and replaced the last two fully connected (FC) layers. Therefore, our
last layers are FC with 1024 neurons, a rectifier linear unit (ReLu) followed by
the last FC with 6 neurons. The online training was stopped if the average loss
value was saturated. Since the loss value for convolutional neuronal networks
is shaky we smoothed it using a window function of five iterations. In addition,
this value was multiplied by one hundred and then rounded to a whole number
to avoid the floating point inaccuracy. Based on this signal the saturation was
detected if three consecutive values are equal.
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5 Evaluation

In this paper, we focus on perceptual learning from the computer’s point of
view. Meaning, the computer learns to execute an action by only receiving
visual input and the status of the action. In the beginning the users trained
the computer explicitly to execute an action by performing gestures in front of
the camera and executed an action on the computer (opening an application,
pressing a key etc.). Each user provided four examples for each type of action.
The actions in our experiment are starting the WinAmp music player after
putting on the headphones, turning the monitor on, showing a sad smiley
(assigned to a fist gesture), playing a hello sound (hand gesture) and showing
a happy smiley (thumbs-up gesture). Those examples where used to fine tune
a Convolutional Neuronal Network (CNN) (LeCun et al., 1998; Yosinski et al.,
2014) which was initially trained on ImageNet (Deng et al., 2009b). This fine
tuning took ≈ 20 minutes for the initial training phase. After that the subject
could do what they wanted for half an hour in front of the camera. This means
that the users were still limited to the gestures and simple behavior to perform
an action on the computer but they could start and use any application on
the computer and perform the gestures/simple behavior in any order and at
any time. The ground truth generation for each recording was performed by
the user executing the action on the computer which was written to a CSV
file. Our CNN was running in parallel writing the performed actions to an
additional CSV file.

5.1 Experiment 1: Evaluation of the batch balancing

For the first evaluation we recorded ten test subjects with two sessions each.
Each session lasted about one hour and included the training and the sample
presentation as well as the half hour in front of the camera without restrictions.
The results can be seen in the first confusion matrix in Figure 5. The CNN
predicted each 500ms and the input time window was therefore set to 15
frames. All recording session where aligned to 30 minutes at 30 fps by removing
the last frames of the video. As can be seen in Figure 5 wrong predictions are
only done to the class zero which is the do nothing class. This means that
the top row in Figure 5 represents all predictions to the do nothing class. As
can be seen 20 examples of the action class 1 are wrongly predicted as the do
nothing class.

In comparison to this Figure 6 shows the results without our batch balanc-
ing (50% of a batch consisted of do nothing class examples the other 50% of
the batch where randomly chosen from action classes with two examples per
action class). As can be seen the wrong predictions to the do nothing class are
less compared to our batch balancing approach. However, there are misclassi-
fication between the action classes which lead to malfunction. In the second
row (action class one) it can be seen that the first action is executed 41 times
for the do nothing class as well as once for action 2 and twice for action 3. For
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Fig. 6: Confusion matrix of the classification results without batch balancing
for an initial training with four examples per class. The classes are the three
gestures (fist (1), hand (2), and thumbs-up (3)) and the two movement se-
quences (turning the monitor on/off (4) and putting on the headphones (5))
in addition to the do nothing class 0.

a user, this malfunction is very unpleasant, as unwanted actions are carried
out. In comparison, it is better if the program does nothing and the user can
repeat his gesture.

Since the repetition of gestures is also unpleasant if it has to be done
too often, our system adapts itself. As an example we assume that the user
executes the gesture for action 1 which is not detected by our system. The
user then opens the sad smiley image. Our setup recognizes that an observed
action was performed which was not recognized by the system. Therefore,
new training samples are generated as described in Section 4 and the CNN is
adapted online. This example brings us to our second experiment which is the
online adaption.

5.2 Experiment 2: Evaluation of the adaption

For the online adaption we repeated the experiment with all ten subjects
and two sessions per subject. This time we used the initial model from the
first experiment and recorded two additional examples per action class. The
training reduced from the initial ≈ 20 minutes to ≈ 1 minute. As can be seen in
Figure 7 the results improved in comparison to Figure 5 again without wrong
action executions. This means that all misclassifications are wrongly assigned
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Fig. 7: Confusion matrix of the classification results after an online adaption
with two additional examples per class and our batch balancing approach. The
classes are the three gestures (fist (1), hand (2), and thumbs-up (3)) and the
two movement sequences (turning the monitor on/off (4) and putting on the
headphones (5)) in addition to the do nothing class 0.

to the do nothing class 0 (Top row in Figure 7) and no misclassification was
assigned to an action class.

In these two experiments we have proven the functionality of our approach
but an application in everyday life is more challenging. An important chal-
lenge is to ensure functionality in different environments. In the previous two
experiments, the environment was always an office (Figure 2), which changes
in the next experiment. Here we use the initially trained models from the first
experiment (Figure 5) and test them on a balcony as environment. We used
the same ten subjects and recorded two sessions per subject. This time one
recording took ≈ 30 minutes since no examples had to be given.

5.3 Experiment 3: Evaluation in a new environment

As can be seen in Figure 8 the classification results decrease. Each action
is recognized only at half of the time which is uncomfortable for the user.
Since our initial model was only trained in one environment these results are
expected. As in the previous experiments in which the training was performed
with our batch balancing strategy, the misclassifications are always assigned
to the do nothing class. Therefore, our system does not perform an unwanted
action. In addition, if the user performs an observed action our system is able
to adapt. This leads to the fourth experiment in which the user provides two
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Fig. 8: Confusion matrix of the classification results for the initially trained
model in a new environment with our batch balancing. The classes are the
three gestures (fist (1), hand (2), and thumbs-up (3)) and the two movement
sequences (turning the monitor on/off (4) and putting on the headphones (5))
in addition to the do nothing class 0.

examples for each action at the beginning and the system has to adapt to the
new environment.

5.4 Experiment 4: Evaluation of the adaption to a new environment

For the online adaption in the new environment we repeated the recordings
(ten subjects and two recordings per subject). This time each subject recorded
two examples per action class and the model was trained for ≈ 1 minute. As
can be seen in Figure 9 the classification results significantly improved for each
action class. In addition, no misclassification was assigned to an action class.
Therefore, our approach can effectively adapt to new environments.

So far we showed that our batch balancing approach effectively avoids the
execution of an invalid action class (Comparison of Figure 5 and Figure 6) and
that the online adaption with the proposed data collection improves the result
(Figure 7 and Figure 9). This is also true for new environments (Comparison
of Figure 8 and Figure 9).
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Fig. 9: Confusion matrix of the classification results for the adapted model in
a new environment with our batch balancing. The classes are the three ges-
tures (fist (1), hand (2), and thumbs-up (3)) and the two movement sequences
(turning the monitor on/off (4) and putting on the headphones (5)) in addition
to the do nothing class 0.

5.5 Experiment 5: Online usage evaluation

Still missing is if we can perform our adaption online, parallel to the classi-
fication. Therefore, we designed the fifth experiment. In this experiment we
used two GPUs one for the classification and one for the online training. The
online training is performed if there exist at least two misclassifications (The
do nothing class was performed but the user executes the observed action).
After the new model is trained it replaces the old model which is still used
during the training time. Again we recorded the ten subjects with two ses-
sions per subject. During each recording the subjects could do whatever they
wanted and also move the table on which the PC and the camera are located.
Therefore, we put the table on a rolling board with a cable reel for power
supply. Initially this table was placed in a kitchen as starting location before
each recording. As initial model for the classification we used those trained in
the first experiment (Figure 5).

Figure 10 shows the results for the online experiment. On top the not
recognized actions for each recording per minute are visualized. As can be
seen, the system does not recognize many actions at the beginning. From
minute 9 it runs very stable with a few drops in the detection rate. These are
caused by new room changes. An example of this is recording 14. As can be
seen in Figure 10, the room changes take place in minutes 15 and 20. This is
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Fig. 10: The top plot shows the amount of not recognized actions for each
recording and every minute. On the bottom plot the room changes per record-
ing are shown. One means that in this minute the room change has started.

followed by a decrease in the detection rate in minutes 17 and 23. Another
good example is recording 18, where a relatively early room change takes place
in minute 4 (Figure 10). This is followed by a direct drop in the detection rate.
As the recording progresses, the room is changed in minute 17. Here one does
not see a drop in the detection rate, since the system has already adapted very
well and already knows the new room. All in all, it can be seen in Figure 10 that
the system is constantly improving. The central part of the results show that
the system is also no longer as prone to room changes as in the beginning of
the experiment. In addition to the results in Figure 10, there were no wrongly
performed actions in all recordings.

The number of training phases can be seen in Figure 11 on the right plot.
Please note that at least two unrecognized actions had to be present before a
training phase could be started. As can be seen, each shot had a minimum of
five training phases and a maximum of nine training phases. Since the training
database increases in each training phase, it is also interesting to see how this
affects the duration of the training phases. This can be seen in Figure 11
on the left plot. The y axis corresponds here to the average duration of a
training phase in seconds and the x axis to the training phase number. It can
be seen that the duration moves around the mean value of one minute, which
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Fig. 11: The left plot shows the average training time per training-phase and
on the right the amount of training-phase occurred over all recordings are
shown.

increases slightly compared to the first training phase. This behavior has to
be investigated in more detail in longer recordings as well as the challenge of
the constantly growing training database. This is discussed in more detail in
Section 8.

6 Runtime and delay

The runtime of our ResNet-34 on a NVIDIA 1050ti card is 89ms per batch (15
images). Since we only classify every half second, a delay of 589ms can occur
between a gesture and an action. Of course, this is not optimal because it can
be perceived by the user. In contrast to this, a smaller window leads to a more
frequent use of the GPU, which in the case of a mobile device like a laptop
leads to a reduced battery life. Finding an optimal window requires further
experiments and depends on the field of application. This is beyond the scope
of this work and will be investigated in future research.

7 Perspectives of adaptive learning

In this section, we want to show the possibilities that adaptive learning brings
for the usability of applications. The first would be to give users the opportu-
nity to improve a system as much as they can. There are already many applica-
tions like Alexa from Amazon, Google Home, gesture control for smartphones
etc. but all have the disadvantage that in case of misclassification or incompre-
hensible input the user can do nothing but repeat them over and over again.
Our approach offers a remedy and leaves it to the user to further improve the
system and adapt it to himself. A further disadvantage of the already existing
applications is that they cannot be adapted arbitrarily. An example of this
would be a non-integrated language in a voice control system or an unfeasible
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gesture for a user. Our system allows to learn any gestures and in case of a
voice control, which is not evaluated in this work, our approach would support
any word combination even without being able to understand the language it-
self. Of course, our system is not comparable to applications that have users
all over the world, but we believe that our approach can improve existing sys-
tems. This is especially true for users who suffer from restrictions as well as
for users who are not supported by the system due to local conditions such
as a dialect. Since our system also allows to personalize the human computer
interaction, the size of the machine learning model used could be reduced and
thus a better runtime in addition to improved classification would be possible.
This is due to the fact that the model no longer has to support all possible
users in the world, but only the local user group.

8 Limitations

The first limitation of our experiments was already mentioned in Section 6,
which concerns the fixed time window of 500ms. For optimum time windows,
especially with regard to the application and the device used for evaluation,
further experiments must be carried out. Another interesting application of our
system would be the use of several users with the same model. Here one would
have to either make an identification before or carry out new experiments
which analyze the use with several users. Another challenge in terms of using
our system in everyday life would be to use it in outdoor areas such as a park
or a street on a bench. In addition, gestures that are very similar to each
other must also be considered. This could be compensated by a higher input
resolution in case of an error, but would result in a longer runtime. In the
last experiment, a long-term analysis was also mentioned. This is particularly
interesting if the user changes buildings or walks around in nature. This would
clearly show the usability of the system in everyday life and would be the final
step before a commercial application.

The long-term application itself also provides new challenges for our sys-
tem. The first big challenge would be to limit the training database. It is not
possible in a real system to store a constantly growing amount of data. One
solutions here could be the use of a server but this also creates data protec-
tion challenges and also requires a stable network connection to the server.
An advantage however would be that not two GPUs are necessary in order to
allow the adaptation of the system. Under a limited amount of Classes and a
modern GPU it is also possible to evaluate and train on a single GPU.

There are further challenges of the system which have to be evaluated but
exceed the scope of this work. The last FC layer which limits the number
of classes that can be learned is one of those challenges. This means, that if
the last fully connected layer has 100 neurons, the model can only observe
99 actions and therefore learn 99 gestures (since one neuron is required for
”no action”). This also affects the batch size for our batch creation strategy
and increases the memory requirements on the GPU. In the case of the server
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solution this would not be a problem, but in the case of a purely local execution
of the system this is not possible indefinitely. Additional challenges would also
come from the different clothing of the user, wearing glass, or changing hair
style as well as changing environments. These challenges could lead to the need
for larger models.

9 Conclusion

We proposed a framework which can be trained by the user. It is capable of
learning gestures on its own to perform human computer interaction. The user
is also able to train the framework directly by examples. We conducted an ex-
periment to show the efficiency of our batch balancing approach. In addition,
we showed that our system is able to adapt to new environments online where
each challenge was additionally evaluated in independent experiments. Based
on the results as well as the runtime of our system, the remaining limitations
were pointed out and further possibilities for research were discussed. Pos-
sible fields of application and the improvement of existing software are also
discussed.
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