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Abstract: Over the last years eye tracking became more and more popular. A variety of new eye-tracker models and
algorithms for eye tracking data processing emerged. On the one hand this multitude of hard- and software
brought many advantages, on the other hand the diversity of devices and measures impedes the comparability
and repeatability of eye-tracking studies. While supply of eye tracking software is high, the functioning of the
algorithms, e.g. how fixations and saccades are identified, is often intransparent and unflexible. The Eyetrace
software bundle approaches these problems by providing a variety of different evaluation methods compatible
with many eye-tracker models.
Eyetrace2014 combines state-of-the-art algorithms with established approaches and provides a continuous
visualization of the analysis process. All calculations provide user adaptable parameters and are well docu-
mented and referenced in order to make the whole analysis transparent.
Our software is available free of charge. It is well suited for exploratory data analysis and education
(http://www.ti.uni-tuebingen.de/Eyetrace.1751.0.html).

1 Introduction

During the last decades, eye-tracking became
resident in many fields of application. Besides its
traditional use in psychology and market investiga-
tion, eye-tracking also found its way into medicine
and natural sciences. Going hand in hand with
the increase in the number of eye-tracking devices
and vendors, the variety of software for the evalu-
ation of the produced data increased steadily (SMI
begaze, Tobii Analytics, D-Lab, NYAN, Eyeworks,
ASL Results Plus, Gazepoint Analysis, ...). Major
brands offer their individual analysis software with
ready-to-run algorithms and preset parameters for
their eye-tracker model and typical application.
However, all of them share a common feature base
(such as visualizing gaze traces, attention maps, gaze
clusters and calculating area of interest statistics) and
distinguish in minor features.
Besides the financial effort and licensing restrictions,
these applications usually can not be extended
by custom algorithms and specialized evaluation
methods. Not few studies reach the point where

the manufacturer software is insufficient or very
expensive, extension of the software is not possible
and all data has to be exported and loaded into
other programs e.g. Matlab for further processing.
Furthermore individual calculations are often non-
opaque or not documented in all necessary detail
in order to allow comparison to studies conducted
with different eye-tracker models or even different
recording software versions.

Eyetrace supports a range of common eye-
trackers and offers a variety of state-of-the-art
algorithms for eye-tracking data analysis. The aim
is not only to provide a standardized work flow,
but also to highlight the variability of different
eye-tracker models as well as different algorithms
(such as fixation identification filters). Our approach
is driven by continuous data visualization so that
the result of each analysis step can be visually
inspected. Different visualization techniques are
available and can be active at the same time, i.e. a
scanpath can be drawn over an attention map with
areas of interest highlighted. All visualizations are



customizable in order to visualize grouping effects,
being distinguishable on different backgrounds and
for color-blind persons.
We realized that no analysis software can provide all
the tools required for every possible study. Therefore
the software is on the one hand extensible and offers
on the other hand the possibility for data export of all
calculated values.

Eyetrace has its root in a collaboration between
the department of art history (Brinkmann et al., 2014;
Klein et al., 2014) at the University of Vienna and
the computer science department at the University
of Tübingen, contributing new scanpath evaluation
tools and algorithms. It consists of the core anal-
ysis component and a pre-processing step that is
responsible for compatibility with many different
eye-tracker models. The software bundle, including
Eyetrace2014 and EyetraceButler was written in
C++, based on the experience of the previous version
(EyeTrace 3.10.4, developed by M. Hirschbühl with
Christoph Klein and Raphael Rosenberg) as well as
other eye-tracking analysis tools (Tafaj et al., 2011).
We are eager to implement state-of-the-art algo-
rithms, such as fixation filters, clustering algorithms
and data-driven area of interest annotation and we
share the need to understand how these methods
work. Therefore implemented methods as well as
their parameters are transparent and documented in
detail with original work referenced. We provide a
standard set of parameters for the algorithms, but
each of them can easily be changed from within the
GUI.

Eyetrace is available free of charge for univer-
sities and educational institutions. It is on the one
hand usable for complex scientific evaluations and
on the other hand also a intuitive tool to get familiar
with evaluation algorithms. Using Eyetrace for
the practical part of an eye-tracking lecture it can
help students to reach a deeper understanding of
eye-tracking data analysis.

2 Data Preparation

In order to make the use of different eye-tracker
models convenient, recordings have to be prepro-
cessed and converted to a common eye-tracker
independent format. This step can also be used in
order to splice a single recording into subsets (e.g. by
task or stimulus) and for quality checking. This step
is performed by EyetraceButler.

EyetraceButler provides a separate plug-in for all
supported eye-trackers and converts the individual
eye-tracking recordings into a format that holds
information common to almost all eye-tracking
formats: For both eyes it contains the x and y
coordinate, the width and height of the pupil as well
as a validity bit, together with a joint time stamp. For
monocular eye-trackers or eye-trackers that do not
include pupil data the corresponding values are set
to zero. A quality report is produced that contains
information about the overall tracking quality as well
as individual tracking losses (Figure 1).

Figure 1: Quality analysis for two recordings with a binoc-
ular eye-tracker. The color codes measurement errors (red),
successful tracking of both eyes (green) and of only one eye
(yellow) over time. It is easy to visually assess the quality of
a recording, even if the beginning and end of the measure-
ment are of bad quality (top) or tracking is lost and regained
during the experiment (bottom).

2.0.1 Supplementary Data

In addition to the eye-tracking data, arbitrary sup-
plementary information about the subject or relevant
experimental conditions can be added, e.g. gender,
age, dominant eye, or patient status. This informa-
tion is made available to Eyetrace2014 along with
information about the stimulus viewed. Using the
provided information the program is able to sort and
group all loaded examinations according to these
values.

2.0.2 Supported Eye-Trackers

The EyetraceButler utilizes slim plug-ins in order to
implement new eye-tracker profiles. As of now plug-
ins for five different eye-trackers are available, among
them models of SMI, Ergoneers and TheEyeTribe as
well as a calibration free tracker recently developed
by the Fraunhofer Institute in Ilmenau.

3 Data Analysis

3.1 Loading, Grouping and Filtering
Data

Data files prepared by the Butler can be batch loaded
into Eyetrace together with their accompanying infor-



mation such as the stimulus image or subject informa-
tion. Visualization and analysis techniques can han-
dle subjects grouping by any of the arbitrary subject
information fields. For example attention maps can
be calculated separately for each subject, cumulative
for all subjects or by subject groups. This allows to
compare subjects with healthy vision to a low vision
patient group or to compare the viewing behavior of
different age groups. Adaptive filters are provided to
select the desired grouping and individual recordings
can be included or excluded from the visualization
and analysis process.

3.2 Fixation and Saccade Identification

One of the earliest and most frequent analysis steps
is the identification of fixations and saccades. Their
exact identification is essential for the calculation of
many scan pattern characteristics, such as the average
fixation time or saccade length.

Eye-tracking manufacturers often offer the
possibility to identify fixations and saccades auto-
matically. However, this filter step is not as trivial
as the automated annotation may suggest. In fact,
different algorithms yield quite different results. By
offering a variety of calculation methods and making
their parameters available for editing, we want to
bring to mind the importance of the right choice of
parameters. Especially when it comes to identifying
the exact first and last point that still belong to a
fixation and the merging of subsequent fixations
that come to fall to the same location, relevant
differences between algorithms and a high sensitivity
to parameter changes can be observed.

As of now, algorithms of the following categories
are implemented: spatial threshold-based approaches
with minimum fixation duration and maximum
spread, velocity-threshold and a Gaussian mixture
model (Tafaj et al., 2012) that adaptively learns from
the data and does not require any thresholds to be set.

Standard Algorithm
The standard algorithm for separating fixations

and saccades is based on three adjustable values: The
minimum duration of the fixations, the maximum
radius of the fixations and the maximum number
of points that are allowed to be outside this radius
(helpful with noisy data). A time window of the
minimum fixation duration is shifted over the mea-
surement points until the conditions of maximum
radius and maximum outliers are fulfilled. In the
following step the beginning fixation is extended if

possible until the number of allowed outliers has
been reached. A complete fixation has been identified
and the procedure starts anew. Every measurement
point that was not assigned to a fixation is assigned
to the saccade between its predecessor and successor
fixation.

Velocity Based Algorithm
Since saccades show high eye movement speed

while fixations and smooth pursuit movements
are much slower, putting a threshold on the eye
movement speed is a straight forward way of fixation
filtering. Eyetrace2014 currently implements three
different variants of velocity based fixation identifi-
cation. Each of the methods can filter short fixations
via a minimum duration in a post-processing step.

Velocity Threshold by Pixel Speed [px/s] A simple
threshold over the speed between subsequent mea-
surements. If the speed is exceeded, the measurement
belongs to a saccade, otherwise to a fixation. While
a pixel per second threshold is easy to interpret
for the computer, it is often not meaningful to the
experimenter and therefore hard to choose.

Velocity Threshold by Percentile Based on the as-
sumption that the velocity is bigger within saccades
than within fixations, velocities are sorted by magni-
tude and a threshold is chosen by a percentile of the
data selected by the user (usually 80-90%).
An example of sorted distances between measure-
ments:
1 3 7 11 12 13 18 21 21 22
Green distances are supposed to belong to fixations
for a 60% percentile (6 out of 10 distances) and the
value 18 would be chosen as velocity threshold.

Velocity Threshold by Angular Velocity [/s] This is
the representation most common in the literature
since it is independent of pixel count and individual
viewing behavior. However, it also requires most
knowledge about the data recording process in order
to be able to convert the pixel distances into angular
distances (namely the distance between viewer and
screen, screen width and resolution). Suggested
values for individual tasks can be found in the
literature (Blignaut, 2009; Salvucci and Goldberg,
2000)

Gaussian Mixture Model
A Gaussian mixture model as introduced in (Tafaj

et al., 2012) is also available. This method is based
on the assumption that distances between subsequent
measurement points within a fixation form a Gaussian



distribution. Furthermore distances between mea-
surement points that belong to a saccade also form
a Gaussian distribution, but with different mean and
standard deviation. A maximum likelihood estima-
tion of the parameters of the Mixture of Gaussians
is performed. Afterward for each measurement point
the probability that it belongs to a fixation or to a sac-
cade can be calculated and fixation/saccade labels are
assigned based on these probabilities (Figure 2). The
major advantage of this approach is that all parame-
ters can be derived from the data. One could evaluate
data recorded during an unknown experiment with-
out the need to specify any thresholds or experimental
conditions. The method has been evaluated in several
studies (Kasneci et al., 2014a; Kasneci et al., 2015).

Figure 2: Fit of two Gaussian distributions to the large dis-
tances between subsequent measurements within saccades
and the short distances between fixations. Two sample
points are shown, one with higher probability to belong to
a fixation (left) and one with a higher probability for a sac-
cade (right).

3.3 Fixation Clustering

After identification of fixations and saccades the
fixations can also be clustered. Areas with a high
density of fixations are likely to contain semantically
relevant objects. Clustering fixations either by
neighborhood thresholds or mean-shift clustering (as
proposed by (Santella and DeCarlo, 2004)) results in
data-driven, automatically assigned areas of interest.
This step reduces time consuming manual annotation
and enables data analysis without prior knowledge of
the analyst influencing the results (Figure 4).

Clusters of saccades correspond to frequent
paths taken by the eyes (Rosenberg, 2014). Fixation
and saccade clusters can be calculated on the scan
patterns of one subject or cumulative on a group of
subjects.

Standard Clustering Algorithm
This greedy algorithm requires the definition

of a minimum number of fixations that will be
considered a cluster and the maximum radius of a
cluster. Fixations are sorted in descending order of
the number of included gaze points. Starting with the
longest fixation, the algorithm iterates over all fixa-
tions, checking whether they fulfill the conditions of
building a cluster with the biggest one. If the number
of found fixations is sufficient, all found fixations
are assigned to the same cluster and excluded from
further clustering. If not, the first fixation cannot be
assigned to any cluster and the algorithm starts again
from the second longest fixation.

Mean-Shift Clustering
The mean-shift clustering method assumes that

measurements are sampled from Gaussian distri-
butions around the cluster centers. The algorithm
converges towards local point density maxima. The
iterative procedure is shown in Figure 3. One of the
main advantages is that it does not require the ex-
pected number of clusters in advance but determines
an optimal clustering based on the data.

Figure 3: Simplified visualization of the mean-shift algo-
rithm for the first two iterations at one starting point. In each
iteration the mean (green square) of all data points (blue cir-
cles) within a certain window around a point (big red circle)
is calculated. In the next iteration the procedure is repeated
with the window shifted towards the previous mean. This is
done until the mean convergence.

Cumulative Clustering
The clustering algorithms mentioned above can

also be used on the cumulative data of more than one
subject or more than one experiment condition. This
way cumulative population clusters can be formed.
They are more robust to noise and individual view-
ing behavior differences. The parameters of the al-
gorithms are adapted for cumulative usage (e.g. the
number of minimum fixations for the standard algo-
rithm depends on the number of data sets used for
cumulative analysis), but the way the methods work
remain the same.



3.4 Areas of Interest (AOIs)

For the evaluation of specific regions, Eyetrace2014
provides the possibility to annotate AOIs manually or
by automatic conversion of fixation clusters. While
the automated way is comfortable, the generated
AOIs are not required to intuitively make sense.
Annotating semantically meaningful areas is still
done best by a human. Therefore we provide a graph-
ical editor where polygonal AOIs can be defined
and edited with few mouse clicks. Figure 4 shows
an example of manually and automatically defined
AOIs and also visualizes that automatically generated
AOIs tend to - but do not necessarily - correspond to
interesting regions of the image. All generated AOIs
can be saved to disk and reused in other sessions or
programs.

Figure 4: Simultaneous overlay of multiple visualization
techniques for one scanpath of an image viewing task. The
background image is shown together with a scanpath repre-
sentation of fixed-size fixation markers (small circles) and
generated fixation clusters (bigger ellipses) for left (green)
and right (blue) eye. AOIs were annotated by hand (marked
as white overlay).

3.5 Scanpath Comparison

Various characteristics of the scanpaths such as
fixation durations and saccade lengths, as well as
visual attention distribution and glance proportion
towards fixation clusters can be calculated and
exported. In addition to these global time-integrated
scanpath descriptors, it is also possible to automati-
cally compare scanpaths to each other. We therefore
implemented a variant of ScanMatch (Cristino et al.,

2010) that makes use of the fixation clusters and
areas of interest described above. Fixation clusters
are used in order to label the scanpath data (Santella
and DeCarlo, 2004). ScanMatch then tries to align
the fixation sequences by the Needleman-Wunsch
string alignment algorithm.

We are planning to extend the scanpath compari-
son capabilities with automated image segmentation
and object tracking functionality for AOI annotation
as well as probabilistic scanpath comparison metrics.

4 Data Visualization

The software allows simultaneous visualization
of multiple scanpaths. These may represent different
subjects, subject groups or distinct experiment con-
ditions. The scan patterns are rendered in real-time
as an overlay to an image or video stimulus. Various
customizable visualization techniques are available:
Fixations that encode fixation duration in their
circular size, elliptical approximations encoding
spatial extend as well as attention and shadow maps.
Exploratory data analysis can be performed by
traversing through the time dimension of the scan
patterns as if it was a video. Most of the visualiza-
tions are interactive so that placing the cursor over
the visualization of e. g. a fixation gives access to
detailed information such as its duration and onset
time.

4.1 Fixations and Fixation Clusters

The visualization of fixations and fixation clusters has
to account for their spatial and temporal information.
It is common to draw them as circles of either
uniform size or to encode the fixation duration as the
circle diameter. Besides these options, Eyetrace2014
offers an ellipse fit visualization to the spatial extend
of the fixation. The eigenvectors of all measurement
points assigned to the fixation are calculated. These
vectors point into the direction of highest variance
within the data (see Figure 5). This visualization
is especially useful when evaluating fixation filters
and their parameters. We found it interesting and
important to see that the jitter within a fixation does
often not form a circular, but a stretched ellipse.



Figure 5: The two eigenvectors of Gaussian distributed
samples (that correspond to the directions of highest vari-
ance). These are used as the major and minor axes for an
elliptic fit.

4.2 Attention and Shadow Maps

Attention maps are one of the most common eye-
tracking analysis tools, besides the high number of
subjects that have to be measured in order to get
reliable results (Pernice and Nielsen, 2009). In order
to enable fast attention map rendering even for a
large number of recordings and high resolution, the
attention map calculation utilizes multiple processor
cores. Attention maps can be calculated for gaze
points, fixations and fixation clusters. We provide the
classical red-green color palette for attention maps as
well as blue version for color-blind persons.

(a) (b)
Figure 6: An attention map calculated for fixation clusters
(a) and the corresponding shadow map (b).

For the gaze point attention map each gaze point
contributes as a two dimensional Gaussian distribu-
tion. The final attention map is then the sum over
all Gaussians. The Gaussian distribution is specified
by the two parameters size and intensity which are
adjustable by the user. This Gaussian distribution is
circular because gaze points do not have information
about orientation and size. For fixations and fixation
clusters the elliptic fit is used to determine the shape
and orientation of the Gaussian distribution. Figure 7
shows an example of a circular Gaussian distribution
(a) and a stretched, elliptical one (b).
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Equation 1 shows the Gaussian distribution in the
two dimensional case. σ1 and σ2 are the variance
in horizontal and vertical direction respectively (see

Figure 7). x and y are the offsets to the center of the
Gaussian distribution (see Figure 7). The correlation
coefficient ρ is zero in Figure 7 to simplify the case.

(a) (b)
Figure 7: Two Gaussian distribution calculated with σ1 =
σ2 = 1 (a) and σ1 = 1 and σ2 = 5 (b).

A variant of the attention map is the shadow map
that reveals only areas that were looked at (see Fig-
ure 6(b)). Its calculation is identical to that of the at-
tention map with the difference of a smoothing step
in order to show the border regions with higher sen-
sitivity. This is done by calculating the n-th root of
each map value where n is a user-defined parameter
that regulates the desired smoothing.

4.3 Saccades

Saccades are typically visualized as arrows or lines
connecting two fixations.

Besides this, a statistical evaluation can be visu-
alized as a diagram called anglestar. It consists of a
number of slices and a rotation offset. A slice of the
anglestar codes in its length the number of saccades
with the same angular orientation as the slice (e.g. if
the slice represents the angles between 0◦ and 45◦ the
number of saccades within that angle range contribute
to that slice) to the horizontal axis is considered. The
extend of a slice from the center of the star can repre-
sent the quantity, summed length or summed duration
of the saccades towards that direction. Figure 8 shows
a diagram where the extension of the slices is based
on the summed length of the saccades.

4.4 AOI Transitions Diagram

For some evaluation cases it is interesting in which
sequence attention is shifted between different areas.
The AOI transitions diagram (Fig. 9) visualizes
the transition probabilities between AOIs during a
specific time period. The color of the transition is
inherited from the AOI with most outgoing saccades.
Hovering the mouse over an AOI shows all transitions
from this AOI and hides the transitions from all other
AOIs. Hovering the cursor over a specific transition
displays an information box containing the number of
transitions in both directions. Figure 9(b) e.g. shows



Figure 8: Representation of an anglestar, the red part repre-
sents data of the left eye, the blue part refers to data of the
right eye.

that after watching AOI cluster3 in more than 80%
of cases gaze stayed at cluster3, in some cases gaze
moved on towards cluster1 or cluster2 and in very
few cases towards cluster4 and cluster5.

(a) (b)
Figure 9: Diagram of the transitions between AOIs. The
graphic is interactive and can blend out irrelevant edges if
one AOI is selected (b).

5 Data Export

5.1 Statistics

General Statistics
Independent of all other calculations it is possible

to calculate some general gaze statistics. These
include the horizontal and vertical gaze activity,
minimum, maximum and average speed of the
gaze. These statistics shine a light on the agility
and exploratory behavior of the subjects and can
be exported in a format ready to use in statistical

programs such as JMP or SPSS.

AOI Statistics
Numerous gaze characteristics can be calculated

for AOIs, such as the total number of glances towards
the AOI, the time of the first glance, glance frequency,
total glance time, the glance proportion towards the
AOI in respect to the whole recording and the min-
imum, maximum and mean glance duration. These
statistics are a supplement to the AOI transitions
diagram and can also be exported.

5.2 Visualization

The transition diagram as well as every visualization
can be exported either loss-less as vector graphics or
as bitmaps (png, jpg). Eyetrace2014 provides the op-
tion to export the information about the subject (e.g.
age, dominant eye) and the parameters used for cal-
culation and visualization as a footer in the exported
image. That way results can be reproduced and un-
derstood based solely on the exported image.

5.3 Evaluation Results

After calculating fixations, fixation clusters or cumu-
lative clusters Eyetrace2014 provides the possibility
to export them as a text file.
Fixations are exported in a table including the
running number, the number of included points, x
and y coordinate, radius and if calculated the id of
the cluster this fixation belongs to. The text file for
the clusters and cumulative clusters include an ID
number, the number of fixations contained, mean x,
mean y and the radius.

Besides the already mentioned text files, fixations
saccades and measurement error sections can be ex-
ported in order to allow extensive further processing
in statistics programs, choosing the export option ”ex-
port events”.

6 Conclusion and Outlook

Summarizing our work of the last year and a half
we believe that Eyetrace2014 is a well structured
program, advantageous enough to use it for academic
research in a number of fields but with its convenient
handling nonetheless usable for persons without
broad eye tracking experience, e.g. for teaching
students. The major advantages of the software are
the flexibility of algorithms and their parameters as



well as their actuality in respect to the state of the art.

Eyetrace2014 has already been employed in sev-
eral research projects, ranging from the viewing of
fine art recorded via a static binocular SMI infrared
eye-tracker to on-road and simulator driving experi-
ments (Kasneci et al., 2014b; Tafaj et al., 2013) and
supermarket search tasks (Sippel et al., 2014; Kasneci
et al., 2014c) recorded via a mobile Ergoneers Dikab-
lis tracker.

Nevertheless there are many plans to extend the
Eyetrace software bundle in the next versions.
Besides the mandatory implementation of new eye
tracker models to EyetraceButler we will extend the
quality-check possibilities for the EyetraceButler
plug-ins.
We want to extend the general and AOI based
statistics calculations, add new calculation or visual-
ization algorithms and make the existing ones more
interactive and transparent. A special focus will be
given to the analysis and processing of saccadic eye
movements as well as to the automated annotation of
AOIs for dynamic scenarios (Kübler et al., 2014) and
non-elliptical AOIs.
We plan on including further automated scanpath
comparison metrics, such as MultiMatch (Dewhurst
et al., 2012) or SubsMatch (Kübler et al., 2014).
Another relevant area is the monitoring of vigilance
and workload during the experiment. Especially for
medical applications such as reaction or stimulus
sensitivity testing the mental state of the subject is of
importance. Available data such as the pupil dilation,
fatigue waves (Henson and Emuh, 2010), saccade
length differences (Di Stasi et al., 2014) and blink
rate may give important insight into the data and even
yield e.g. cognitive workload weighted attention
maps.
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